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Abstract

Present paper relates to the analysis of fatigue and fatigue failure of thin long steel bars with the application of a new
rheological model and rheological-dynamical analogy (RDA). The analogy has been developed on the basis of
mathematical-physical analogy between rheological model and dynamical model with viscous damping, and is aimed to
be used for the analysis of inelastic deforming of materials and structures. In this presentation, the aim will be to
highlight different aspects of fatigue behavior and fill the gap that other methods cannot. This paper provides a nu-
merical example of obtaining S—N curves of thin long steel bars using RDA model and description of the hysteretic
energy dissipation of material subjected to cyclic stresses. First the axial fatigue setup and the experimental results are
discussed. The latter in order to demonstrate the ability of the RDA modeling technique, the comparison with Griffith’s
theory of fracture is presented. RDA method for fatigue crack growth rate is proposed and compared with Paris power
law. On the basis of the comparisons, the present RDA method could be considered as valid and suitable for modeling
of fatigue behavior.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The failure of materials under a variable load at stresses lower than the ultimate strength is called fatigue
failure. This name does not reflect the physical nature of the phenomenon, but it has become such a
customary term that it is used to this day.

Experiments show that under alternative tension or compression a decrease in the acting force results in
an increase in the number of alterations of this force required breaking the specimen. Each material has a
maximum normal stress at which the specimen can withstand practically unlimited number of alterations of
the force without breaking down. This stress is denoted by o, (stress when the fatigue crack appears) and is
called the fatigue limit or the endurance limit.
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Nomenclature

a crack length
ay, ai, a» material constants
A, Ay, A, cross-sectional area of the bar

Ared reduced cross-sectional area of the bar

Ay fracture area or crack area

A unit cross-sectional area

A, B, C constant of integration

b sample width

c phase velocity of mechanical wave

¢, Co viscous damping, critical damping

C axis intercept

da/dN, rate of crack growth

dett infinitesimal extension

d!/ infinitesimal change of the length

Ey slope of the elastic strain or Young’s modulus
Ex slope of the viscoelastic strain or viscoelastic modulus
ER dynamic viscoelastic modulus

f frequency of external force

fs frequency of a variable stress cycle

F geometric factor

g gravity acceleration

Gy, Gi Griffith’s rate of release of potential energy
G, RDA rate of release of potential energy

H symbol for the Hooken spring

H slope of the viscoplastic strain or viscoplastic modulus
H'P dynamic viscoplastic modulus

L moment of inertia (of cross-section)

k stiffness

k. radius of gyration

K symbol for the Kelvin’s body: K = H|N

Ky, K; stress intensity factor

K. RDA stress intensity factor

Knax ~ maximum absolute stress intensity factor
Kin minimum absolute stress intensity factor
unstretched length of the bar

length of the bar for slenderness ratio on proportional limit
mass

slope of crack growth curve

symbol for the Newtonian dashpot
number of cycles in the loading time
number of cycles for fatigue life

number of cycles for fatigue failure life
compression external force

constant of integration
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0 heat or thermal energy

0, constant of integration

r coeflicient of asymmetry of cycle
R RDA dimensional parameter

S, S1, S, tension external force
StV symbol for the Saint-Venant’s body

t time

to initial instant of time

t fatigue failure life

t fatigue life

t time when proportional stress has been achieved
t—ty time difference

T* time of retardation in the viscoplastic yielding
Tk time of retardation

T2 dynamic time of retardation

u displacement of the particles

U,, U, elastic potential energy

Uy hysteretic energy dissipation

Us energy to produce a unit area of fracture surface
Ur total mechanical energy

U, — U, change in internal energy
v, v, vy velocity of the particles

w potential energy of the external forces
Wy rate of release of elastic energy
Wi ve rate of release of viscoelastic energy
Wr thermal expansion work
stress level for viscoplastic yielding
o phase angle
o coefficient of linear thermal expansion
y specific gravity
Vs specific surface energy
0 ratio of load frequency to the frequency of natural vibrations or relative frequency
01 relative frequency for first cycle
Oc relative frequency for fatigue failure life
O relative frequency for fatigue life
AG. RDA rate of release of potential energy range
AK stress intensity range

AK;. RDA stress intensity range
Al, Aly, Al, increase in length
AT, AT,., AT, difference between the final temperature and the original temperature

Ao stress range

€ total inelastic strain

g axial strain

& lateral strain

el Hencky’s measure of extension

¢, &1, & strain rate
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& strain acceleration

&n complementary strain

&p particular strain

€p particular strain rate

¢ strain due constant stress

& creep strain

& strain vary periodically or sinusoidal with time
EN cyclic strain amplitude

ol elastic strain

Eve viscoelastic strain

Eve viscoelastic strain rate

Eyp viscoplastic strain

Evp viscoplastic strain rate

n RDA dynamical coefficient

AK viscoelastic coefficient of normal viscosity (Trouton’s coefficient)
AN viscoplastic coefficient of normal viscosity (Trouton’s coefficient)
Ap slenderness ratio on proportional limit

u Poisson’s ratio

ut Poisson’s ratio for the Hencky’s measure of extension
I total potential energy

P mass density

o, 01, 0, variable stress

G stress rate

I stress acceleration

0o constant stress or mean cycle stress

a’ stress vary periodically or sinusoidal with time
OA amplitude of stress

op proportional stress

o‘g Euler’s proportional stress

orP*  RDA proportional stress

Ocr critical stress

Osv stress in the Saint-Venant’s element

oy uniaxial yield stress

Omax maximum absolute stress in the cycle
Omin minimum absolute stress in the cycle
Omaxe ~Mmaximum applied dynamical stress

O fatigue limit

ON nominal stress at the crack
o, RDA fracture stress

1] creep coefficient

Q" structural creep coefficient
@, &1, &, diameter of the bar

Doq reduced diameter of the bar
W circular natural frequency

W, stress circular frequency
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\ symbol for parallel connection
— symbol for serial connection
H-K—(N|StV) symbol for a new rheological model

The physical phenomenon of fatigue was first seriously considered in the mid-nineteenth century when
widespread failures of railway axles in Europe prompted Wohler (1867) in Germany and Fairbairn in
England to conduct the first systematic investigations into the fracture of materials under cyclic stresses
around 1860.

However, the main impetus for research directed at the crack propagation stage of fatigue failure, as
opposed to mere lifetime calculations, did not occur until the mid-1960s when the concepts of linear elastic
fracture mechanics (LEFM) and so-called ‘““‘defect-tolerant design’ were first applied to the problem of
subcritical flaw growth. Griffith (1921, 1925) used the solution of Inglish (1913) to determine the rate of
release of potential energy. Orowan (1948) and Irwin (1948) saw that a plastic zone forms at the tip of a
crack in high strength metals and, provided this zone is small, the plastic work required to create a unit area
of fracture surface is a material constant that can be added to the surface energy. Crack surface opened
under load and Wells (1961) suggested that in metals, fracture occurs when the crack tip opening dis-
placement reaches a critical value. The concept is most readily applied in conjunction with the fictitious
crack model of Hillerborg et al. (1976). Although he did not call it a fictitious crack, the concept was first
applied by Dugdale (1960) to the problem of a Griffith crack in an elasto-plastic solid.

This approach recognizes that all structures are flawed, and that cracks may initiate early in service life
and propagate subcritically. Lifetime is then assessed on the basis of the time or the number of loading
cycles for the largest undetected crack to grow to failure, as might be defined by an allowable strain, or limit
load or fracture toughness (Kj.) criterion. Implicit in such analyses is that sub critical crack growth can be
characterized in terms of some governing parameter (often thought of as an effective “crack driving force™)
which describes local conditions at the crack tip yet may be determined in terms of loading parameters,
crack size and geometry. Linear elastic and elastic—plastic fracture mechanics have, to date, provided the
most appropriate methodology for such analyses to be made, and consequently, considerable effort has
been directed towards defining parameters which uniquely stress and strain fields at the crack tip over
length scales characteristic of the local fracture mechanisms involved.

The concept of directly applying fracture mechanics to subcritical fatigue crack growth was first suggested
by Paris et al. (1961) in their famous ‘“Rational Analytic Theory of Fatigue”. Despite difficulties in finding
the physical nature of the phenomenon, their proposal of correlating fatigue crack propagation rates
(da/dN) with the stress intensity factor (K;) has remained the basis of the defect-tolerant fatigue design
approach ever since. The rate of growth of a crack caused by fatigue loading is approximately given by Paris
law (Paris and Erdogan, 1963). This law has found wide applicability for fatigue growth of cracks in metals.

Based on the concept that crack tip stress and deformation fields in an elastic—plastic strain hardening
solid can be described by the Hutchinson—Rice-Rosengren (Rice and Rosengren, 1968) singularity and thus
uniquely characterized by the J-integral, Dowling (1976) suggested that fatigue crack propagation in the
presence of extensive plasticity could be correlated to the range of J, that is, AJ, which under linear-elastic
conditions would be equal to AK?/E, where AK is stress intensity range.

Although fatigue represents one of the major causes of failure in engineering service, a complete un-
derstanding the mechanical fatigue due to cyclic stress has not yet been reached. Good progress might be
made by using rheological-dynamical analogy (RDA). In the course of my research work I developed a new
model of viscoelasto-plastic material that is able to describe the mutual interaction of elasticity, visco-
elasticity and viscoplasticity. Based on this model, the RDA is established as the theoretical concept for
studying the inelastic material deforming. This analytical concept has been already used and proved
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Fig. 1. (a) Change of strain according to the proposed model. (b) A new rheological model of viscoelasto-plastic body.

through several inelastic problems (Milasinovié, 1996, 1997, 2000). The employed RDA is based on a new
rheological model, H-K—(N|StV), of viscoelasto-plastic material, and mathematical-physical analogy be-
tween rheological model and dynamical model with viscous damping. It occurs only when there is the
arrangement of five fundamental elements making up the body as shown in Fig. 1b. The parameter H’ (the
slope of the viscoplastic strain), furthermore, must be included in the yield condition. All of the other
previously mentioned combinations with less or more fundamental elements could not restore this analogy.
Furthermore when dealing with development of the mathematical-physical models for fatigue behavior the
main advantages of the RDA formulation are associated with its simple and rigorous mathematical—
physical structure allowing for analytical solutions.

The objective of the present paper is to explain the physical mechanism and to find the experimental
proof for the new rheological model and RDA. Theoretical consideration has also been made to confirm
the applicability of RDA method that other methods cannot. The present paper presents newly developed
S—N curves from relationships such as the RDA describes the form of the constant amplitude. Closed form
analytical solutions for the rate of release of viscoelastic energy were derived as well as the fatigue life, the
fatigue failure life, and the change in the temperature of the body. Furthermore, Bernoulli’s energy theorem
is used for the evaluation of the localized reduction of cross-section area, from which we obtain: the
fracture stress, the maximum applied dynamical stress, the rate of release of potential energy, and fatigue
crack growth rate.

For a more exact elucidation of the RDA, this author is introduced RDA prediction to simulate ex-
perimental results of the increased temperature of the specimen under axial fatigue, including distinction
between viscoelastic and elastic behavior.

Due to the present observation, fundamentally new, our understanding of fatigue behavior can be
achieved.

2. A new rheological model

The results of experimental research of strains show that their development and magnitude are dependent
on time, and because of that the rheological analysis proves unavoidable. Elasticity, plasticity, viscosity and
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strength are essential rheological properties from which most of other complex properties may be derived
(Reiner, 1955). The ideal bodies, typifying the three fundamental properties of elasticity, plasticity and
viscosity, can be conveniently represented by the following rheological models (Hookean spring, Saint-
Venant’s resistance and Newton’s dashpot). Combining the rheological elements, various structural rheo-
logical models illustrating the stress—strain relationships of technical media can be obtained.

As stated earlier, the majority of materials are in the state of elasticity and viscoelasticity in the con-
ditions of low loading, whereas after reaching the yield stress, it transits to the state of viscoplasticity. Every
strain is in principle a function of time because a stress is always introduced into the body during a definite
time interval (even a very small one) and therefore the distinction between a time-dependent strain and a
strain not depending on time is very uncertain. Here, it is assumed that the strain is measured when the
specified stress has been reached. Strain ¢, obtained in this way shall be considered to be independent of
time, i.e. instantaneous. Then the time-dependent, or delayed, &, and &, strains are measured from the
time, when the instantaneous strain has developed. Elastic material behavior can be modeled by a linear
spring (H). Therefore, instantaneous or initial strain should be & = 0o/Ey where Ey is the elastic modulus.
Delayed elastic or viscoelastic strain &, may be imagined as a common behavior of elastic Ex and viscous
Jx materials. A piston exerting pressure on a liquid with a viscosity Ax represents ideal viscous material.
Viscoelastic material behavior can be modeled by Kelvin’s model (K), where the elastic and viscous ele-
ments are linked in parallel. The concept of delayed plastic or viscoplastic material behavior &, may be
imagined as a common behavior of the friction slider component gsy and viscous component Ay of ma-
terials. The friction slider develops a stress gsy, becoming active only if ¢ > ¥ = gy + H'e,, (), where o is
the total applied stress and Y is some limiting yield value. The stress level in the friction slider depends on
whether the threshold or yield stress Y, has been reached. If the stress o is discontinued, the friction slider
does not return into its original position. Viscoplastic material behavior can be modeled by the third of the
sequentially linked models (N|StV) as shown in Fig. 1b. Initial strain rate should be &= go/lk +
(O’ — Uo)/)LN.

Summarizing the above-mentioned assumptions, a new rheological model may be presented by the
following structural equation:

H-K—(N|StV). (1)
The corresponding differential equation (Milasinovi¢, 2000) is

é(t)+é(t)(]?K+I:[,>+8(t)EKH,—&(t)+d(t)( Be [ H 1, 1)

AK AN /ALKXN B E A.KEH lNEH AK )VN

K H ExH' Ex
t - . 2
+o(0) (/IK/IN T T omEn ) 7 T @)
The homogeneous equation of the inhomogeneous equation (2) has the following form
£() kAN + &(2) (Exin + H' Ax) + () ExH' = 0, (3)

where Ax, An, Ex and H' are given constants at fixed step time.

3. Physical mechanism of the rheological-dynamical analogy
3.1. A mechanical waves

Of the different ways in which energy can be transferred, the wave-transfer mechanism is unique in that
energy is transmitted without the physical transfer of material from the source. A mechanical wave is a
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disturbance that moves through mater. To produce mechanical waves, we need a source of energy which
produces a disturbance, and an elastic medium to transmit the disturbance. The elastic medium obeys
Hooke’s law. The propagation of waves in a uniform isotropic medium can be described by a partial
differential equation, called the wave equation (Timoshenko and Goodier, 1951). Thus

o*u u  %u u
et ] @

Let us imagine a thin long symmetrical bar (say, with a square or circular cross-section), with the length /,
and the circular cross-sectional area 4. Then the wave equation may be represented in the following form

o%u ,Q%u

Here u is displacement of the particles. The propagation of longitudinal waves in a thin long bar is asso-
ciated with its longitudinal tension and compression. Hence, the phase velocity of such waves is

E
¢ = _Ha (6)
p
where p is the density of the undisturbed medium.
The velocity of the particles is

a
\/EHp ’
where ¢ = S/A is stress or the ratio of the internal force, S to the cross-section area, 4, and ¢, = Al/l is
elastic strain (elongation) or the ratio of the increase in length, A/ to the unstretched length, /.

The maximum displacement of the vibrating particles of the medium is the amplitude of the wave
motion. It is determined by the energy of the wave. In practical system, wave energy is dissipated and the
wave amplitude gradually diminishes. The reduction in amplitude of a wave due to the dissipation of wave
energy as it travels away from the source is called damping.

(7)

V= CE =

3.2. Rheological-dynamical analogy

However, from a new rheological model input parameters listed, only Ey is relatively easy to measure
experimentally. To apply the model to real materials, we need to relate the remaining parameters to
physically an alternative means by virtue of their mathematical descriptions. We shall now consider the
problem in which the applied forces vary with time so that dynamic stresses are setup in the body.

A mechanical disturbance (strain) propagates in an elastic medium at the finite velocity c¢. Therefore,
strains, initiated by the wave source at the instant ¢, of time, reach an arbitrary point M of the bar at the
instant ¢ > #,. The greater the path / the wave travels from its source to point M, for the greater the dif-
ference ¢t — t, = //c. Consequently, the vibration at point M lags in phase behind that at the source of the
waves. If [, is the distance between two ends of the bar the difference ¢ — £, is

=iy =" (8)

Under tension and compression of the bar, the frequency of natural vibrations is

EHA Fy 1
‘“‘\[ ,OAlo Vo ko _o TD ®)
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Initial strain rate, according to the proposed rheological model is

& =&+ éyp =09/l + (06— 060)/2n, (10)
while from diagram in Fig. 1a is

éve + &p = [00/Ex + (00 — oy)/H']/T". (11)
Comparing above equations, we obtain

60/ix + (60 — ay)/In = [60/Ex + (60 — ay)/H']/T", (12)
so that

in = (o0 — oy)/{[ov/Ex + (00 — ov)/H'|/T" — 00/ x }. (13)

The strain rates go/(Ex T*) and 0,/Ax are very small values in comparison with the rate in the viscoplastic
yielding (o9 — oy)/(H'T*). Therefore, they can be neglected without an influence on the result. Because of
that, the coefficient of viscosity can be taken as

In=H'T". (14)
According to the Kelvin’s body there is
Ix = Ex I, (15)

where Tk represents the time of retardation.
Heaving in mind Eq. (3), we can formulate expression similar to formula (9), turning the model into the
case of critical damping, Fx/Ax = H'//n (Milasinovi¢, 2000)

EcH | 1 1
N Tk TR (16)

where TP represents the dynamical time of retardation.
According to formulas (9) and (16) we shall have:

EHl EKH, P EKHI’ylé ;LK;LN EKH/Al(z)p EKH,
- = = A /A — = = = m’ 17
\Vpdo Vikin ~ 7N T Eng y EyyA 7k {17)
where
Ak ExH'
m="2N =2 (18)
b b
Critical damping is
Ex A
c=co=2Vkm=2 KVN. (19)

By these assumptions, we turned one very complicate nonlinear viscoelasto-plastic problem into a simpler linear
dynamical one.
Replacing AxAn by my, Ex/n + H'Ax by ¢y and ExH’' by ky, the differential equation (3) becomes

Et)m+é(t)c+ e(t)k =0, (20)
where
m:/lelN, C:(EK}LN+H/1K)7 k:EKH. (1)

7 v v
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Fig. 2. Analogy between a new rheological model and dynamical model with viscous damping.

Analogy between differential equation (20) and differential equation of damped free vibration of single-
degree-of-freedom (SDOF) system becomes obvious. Coefficients are dimensionally equal in these equa-
tions. Therefore, a very important new mathematical-physical analogy between the new rheological model
and the dynamical model with viscous damping, Fig. 2, can be formulated. In accordance with this it is
obvious that inelastic response of engineering structures is essentially a dynamical problem. The rheology is
a branch of physics, which is closest to mechanics. The analogy exists for a very specific rheological model,
and is one example of numerous analogies that can be observed in mechanics, as well as between me-
chanical and electrical (thermal, magnetic, etc.) systems, by virtue of their mathematical descriptions.

4. Cyclic stresses
4.1. Coefficient of asymmetry of cycle

From among the various types of steady variable stresses, cyclic stresses are the most important; besides,
these stresses are the most widely investigated. The curves, which describe the variation of stresses in time,
may considerably differ in appearance; variation of stresses in machine parts often follows the sinusoidal
law

a(t) = a9 + o4 sin(w,t), (22)

where w, = load or stress frequency.

The maximum absolute stress in the cycle is denoted by oy,.x, While the minimum is denoted by oy,;,. The
ratio of minimum stress to maximum with the signs taken into account is known as the cycle characteristic,
or the coefficient of asymmetry of cycle

Omin

=

(23)
amax

The coefficient varies between —1 and +1. The half of the sum of maximum and minimum stresses of a cycle

(taking into consideration their signs) is known as the constant component of cycle, or mean cycle stress.
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Omax + Omin 1 +r
oy = = 3 =5 Omax. (24)
The half of the difference of maximum and minimum stresses (also taking into consideration their signs) is

known as the variable component of cycle or the amplitude of stresses in the cycle

Omax — Omin 1—r
[N > - B Omax - (25)

4.2. Dynamic coefficient using RDA

The RDA equation due to sinusoidal stresses takes the form of:

" . k Ex+H . / A
E(6)m + &(0)c + e(0)k = aa <_ ) Sas w§ﬂ> sin(wet) + oa <i T St > W, cos(wyt)
En Y En Ey Y
k Ex+H Ex
—t— ) —oy—. 26
+ 09 < Fu + ) ) oy . (26)
The solution for this second order differential equation with constant coefficients is
e(t) = en + &p, (27)
where ¢, is the complementary solution and &, is the particular solution for the given equation:
&p = Asin(wyt) + Bcos(w,t) + C, (28)
where A, B and C are constants:
P,(k — mw?) + Qyco, (k= maw?) = Poew, 1 1 1 1
= ( 02) Q 2 :Q( g) 2 :O-0<_+_+_,)_O-Y_,7 (29)
(k — mw?)” + (cow,) (k — mw?)” + (cw,) Ew Ex H H
and
k EK + H' , m C ;LK + ;NN
P, = — =) - — 0,= — - 30
JA(EH+ . ) aAw"EH 0 0A<EH+ . w (30)
Strain under constant stress, taking into consideration delayed elastic or viscoelastic strain is
00 00 _ )
) =en+C=6=—+—(1—e W)= —_(1+¢), 31
(=4 2 )= gy (10) (31)
where creep coefficient is
Eve H (t()) _
) =2 =" (1 — e W), 32
o) == ==p = (1= (32)
Cyclic strain is given by
& (1) = Asin(w,t) + B cos(w,t), (33)
or
&y (1) = easin(w,t — a), (34)
where cyclic strain amplitude and phase difference by which the strain lags behind the stress are:
P2 2 Po [ o k - 2
ep = < —ZQ” 5, tano = co Qz( ma,) . (35)
(k — m?)’ + (co,) Po(k — mo?) + Qscom,
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When the structural member is loaded cyclically, the rheological behavior of the member must be char-
acterized by the dynamic time of retardation 7;2. Now, taking into account formula (32) we have RDA
viscoelastic modulus

EH(I()) _(,/7D EH(I())
ER(t,1) = 1 —e W) = =222 36
R == ( ) ="o (6)
where
e ) ~ 0. (37)

Taking into consideration formula (36), we find the following expression for cyclic strain amplitude and
phase or loss angle

1+ ¢) + & B
EA = A (1+9) ;r , tanoc:—go, (38)
En(t) 1+90 1+6 +¢
where ratio of load or stress frequency to the frequency of natural vibrations is
w
o0 =" =w,TP. 39
% 12 (39)

Dynamic mechanical properties indicate the ability of a material to dissipate energy. Owing to their visco-
elastic nature, dynamic mechanical properties measure the in-phase and out-of-phase modules with an ap-
plied oscillatory stress function. More importantly, tan o the damping factor (measure of the phase angle
between the applied stress and subsequent strain) is also obtained. This allows a qualitative estimation of the
ability to dissipate energy.

The maximum phase angle is measure of the maximum energy dissipation

max tans = — (40)

0=+/1+0¢ 2V1+QD

The variation of phase angle with ¢ (D for the ratio J) is shown in Fig. 3. At very high frequencies the
behavior is stiff and elastic; the stress and strain are in phase. Lower frequencies allow some viscous flow,
and the strain lags the stress. At still-lower frequencies, the stress and strain are again in phase.

1.2

—e—creep coef =05

—a— creep coef =1

tan alfa

—a— creep coef =2

—«— creep coef =3

—«— creep coef =4

—e— creep coef =5

—+ creep coef =6

100

log D

Fig. 3. Frequency dependence of phase angle.
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Fig. 4. RDA dynamic coefficient versus ratio 9.

The ratio 5 of cyclic strain amplitude ¢, to strain &° is the RDA dynamical coefficient,

EA OA (1+(p)2—|—52 1

=2_22 . 41
(RPTS 1+6* 1+o (41)

This form of the formula shows that dynamic stresses may be expressed through constant stresses by
multiplying the later with the RDA dynamic coefficient

oA = N0oy. (42)
At 6 — 0 (static loading) or ¢ — 0 (state of elasticity), we have the special case
OA
=—. 43
"= (43)

At 0 — oo or 6 — 100, the diagram representing the RDA dynamical coefficient becomes a horizontal line,
as illustrated in Fig. 4, and
1
lim 5 = 22

Jm 0_—0—1 Yo (44)

5. Fatigue limit using RDA
5.1. Fatigue limit under constant stress amplitude

The ratio » is a key to understanding the loading mode for determination the fatigue limit in an
asymmetrical cycle, which involves combination of tensile and compressive stresses, for example r = —1
represents reversed loading or symmetrical cycle. Other than quasi-static tensile and compressive stresses,
where r is equal to one, the r ratio identifies the fatigue limit-loading mode in the range —1 and +1. In
accordance with RDA the fatigue limit under constant stress amplitude may be obtained as follows:

(1+¢)+0 1

Oe = 00 + 0A = 0g + 100 = 0g + 04 1102 1+

(45)
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Fig. 5. RDA fatigue limit curves (S—log D curves) for creep coefficient =1.

Taking into account formulas (24) and (25) we have

1 (1+¢)+8 1

o.(r) = zamax I+r+(1-7r) 1o o (46)

The results of formula (46) may be plotted on diagrams in which values of stress are plotted as ordinates
and values of J are plotted as abscissas. Such diagrams may be called S—-D diagrams (S for stress, D for the
ratio ¢) and drawn using semi logarithmic plotting as shown in Fig. 5.

S—D diagrams become horizontal when 6 — oo or & — 100, for values of, ¢ ranging from 0.5 to 6, thus
indicating a well-defined RDA fatigue limit as shown in Table 1. From formula (46) follows:

. . 1 1 . 1
¢$1Lnolc Gc(l) = Omax;, (;lglolo UC(O) = E <1 =+ 1+(p> O max (Slglolc Uc(_l) = mamax- (47)
The proposed S—N curves are based on extensive theoretical studies using a newly proposed rheological

model and RDA. Unlike previously available and purely empirical S-N curves, the newly developed S—N curves

Table 1
Numerical values depicting the variation of fatigue limit as a function of ¢ for various values of the creep coefficient ¢

(1+9)*+6* 1
Tte  T+g

@ o 1/(1+ o)
1 10 100

0.5 0.849837 0.670779 0.666708 0.666667
1 0.790569 0.507371 0.500075 0.5

2 0.745356 0.346283 0.333467 0.333333
3 0.728869 0.267922 0.250187 0.25

4 0.72111 0.222497 0.20024 0.2

5 0.71686 0.1934 0.166958 0.166667
6 0.714286 0.173514 0.1432 0.142857
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take into account the mechanical aspects of fatigue and cater for the influence of creep (creep coefficient) of
material on the fatigue limit.

5.2. General variation of strength with range of stress

The test results for determining fatigue limit under different cycles are conveniently represented in the
form of diagrams.

The simplest among these diagrams is the diagram in the g, and g4 coordinates (Haigh type of diagram)
shown in Fig. 6. On this diagram the values of g, are laid off on the x-axis to a certain scale and the values of
o are laid off on the y-axis in the same scale. Curves may be plotted on the basis of the formulas (47) as
RDA fatigue limits under different cycles of variable stresses and for different values of creep coefficient.

Fig. 7 shows the Smith type of diagram in which the line representing constant (mean) stresses is drawn
as a straight line at an angle of 45% with the horizontal axis. This makes the minimum stress line curve and
permits the horizontal axis to represent the constant stresses to the same scale as on the vertical axis.

048
08

07 I\@BBE-S —e—creep coeff.=0
06 —m—creep coeff.=0.5

05 oo a1l

. A5 —a— creep coeff =1
04 \%sm —s—creep coeff =2
043 ‘@m

T ™ —s—creep coeff.=3
02 1+—

0.1

’

] 02 04 0.6 0.8 1
Constant stress {Mean stress)

0

Cyclic stress amplitude (Alternating stress)

Fig. 6. Haigh type of diagram of RDA fatigue limits for different values of creep coefficients.

/ (Bh6a! BREEEE
= 2t
IJ:223333 —a— Creep coeff.=0

—a— Creep coeff.=0.5

= S —a— Creep coeff =1
05 —s— Creep coeff.=2
R —»— Creep coeff =3

Tietee I/D;GBB
1175

/ ’ 53

Vi1, 4

Constant stress (Mean stress)

Cyclic stress amplitude {Alternating stress)

Fig. 7. Smith type of diagram of RDA fatigue limits for different values of creep coefficients.
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6. Parameters of a new rheological model

Generally, the stress—strain curve is linear elastic until ¢ < g, (see Fig. 8) and nonlinear with considerable
viscoelasto-plastic strain, under compression stress ¢ > og,. Critical stresses and proportional stress are
defined by Euler’s expression

Eym? Eym?
Ucr:H_”:m _ fHT (48)

(&) ()
k: k:
P
If we now turn to the consideration the dynamical time of retardation 72, we shall have the dynamic visco-
elastic modulus ER, (see formula (36))

EQ : (49)
K (p*
where ¢* is structural creep coefficient.
Using the RDA modeling technique the proportional stress now may be expressed as follows
1
RDA __ gD
O'p =H EH ﬁ 5 (50)

where H'P is the dynamic viscoplastic modulus, and R = const is the RDA dimensional parameter.
Comparing the two expressions for o, we get

2
()
ke
p

_ D
R= 7H’ . (51)
On the other hand, k = End/ly and k = ER H'”/y. Therefore
A
HP = q)*—y. (52)
ly

Let us determine the structural creep coefficient ¢* on the thin long reinforced steel bar with circular cross-
sectional area 4 and length /y, = /, = Apk., where k. is the radius of gyration and Ap ~ 100. Choice of

o
fem

usI

Gp‘

YA

o

Fig. 8. Stress—strain curve.
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Fig. 9. Steady transfer of energy through a long bar having a section with reduced diameter.

slenderness ratio, Ap ~ 100 can be explained by the fact that elastic (Euler’s) theory is not valid for slen-
derness ratio under the 100. It is confirmed by numerous experimentally obtained results on steel.

During a small time interval At the total strain energy density will move so that the fictitious interface 4,
will have moved a short distance A/;. In the same time the fictitious interface 4, will have moved a greater
distance A/, such that 4,Al; = A,Al, =V, the fictitious volume. The energy went all the way through the
fictitious volume without the physical transfer of material from the source by any cross-section of the bar in
time At. Therefore (see Fig. 9),

AIUI = Azl)z, (53)
where from
A=A 2 (54)
U2

The reduced area 4, can now be found by applying Bernoulli’s energy theorem

1 2 1 2 1 Al : 2
01+§p01:02+§p02=62+§p A—2 vy, (55)

where o = g, is the static energy density, and 1/2(pv}) is the kinetic energy density.
By putting v; = ¢ (see formula (6)), in formula (55) we find that

A S (56)

Llo-a) |1
UEHGZ +1

Here o, is the RDA fatigue limit in symmetrical cycle (see formula (47)),

Op

=0.(-1) = . 57
0y = 0(—1) 1+ o (57)
Thus we get the following formula for the reduced area 4,
A
I (58)

2.6 «
E_Hp ( 11)(/)*) + 1

If the bar is subjected to tensile or compressive stress in a given direction, not only strain in that direction
(axial strain) takes place but also strains in directions perpendicular thereto (lateral strain). Within the
range of elastic action the ratio of lateral to axial strain under conditions of uniaxial loading is called
Poisson’s ratio.

Experiments show that under tension (Fig. 9) the length of bar increases by A/, whereas its width de-
creases by 2a = ¢; — &,. The axial strain can be found by applying Hooke’s law
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Ip

&l EH ) ( )
and the lateral strain is

& = ey, (60)
where u is Poisson’s ratio.

On the other hand the lateral strain is
¢ — ¢,

g =——=. 61

i . (61)
Therefore,

¢ — ¢, En
U=——>:— 62
¢ o (2
Diameter @, of the bar is
¢
Py = ————. (63)
420 *
e () +1
Therefore, Poisson’s ratio may be expressed by the formula
1 E
p= |1 -2, (64)

4 2& o* + 1 Gp
Ey I+¢*

For most structural materials, Poisson’s ratio has values that lie between one-third and one-sixth; hence,
with ordinary measuring devices, the precision of lateral-strain measurements is not as high as that of
corresponding axial-strain measurements.

The influence of ¢, and Ey on the result of u are very small as compared to ¢*. Then we may consider the
theoretical value of Poisson’s ratio (u = 0.25) as the limit of formula (64), when ¢* — 1,

o
o 0eE)
limp = ~ 0.25. (65)
=1 Op

Knowing the value of u, we can calculate the change in the volume of the bar under tension or compression.
If Poisson’s ratio g = 0.5, there is no change in the volume due to deformation. At ¢* — oo, then it will be

1
el
|t

lim p¢ = ~0.5. (66)

¢*—00 Op

However, since p < 0.5 for a majority of the materials at small strains (¢ < 1), tension is accompanied by
an increase and compression by a decrease in the volume.

The value of extension ¢ was defined above as Al//y, but it is not immaterial what the value of A/ is. If A/
is small, then it will be natural to refer it to /,. But if A/ is not small, then at large extension ratios it will be
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more logical to refer an infinitesimal change of the length d/ to the current value of the length /. This means
that an infinitesimal extension de!' determined in this way is given by

b _dl

de 7 (67)

Then, proceeding from the natural initial condition of the absence of deformation at / = /;, we obtain the
following expression for &

!
A
lo

I 1o Iy

The quantity & as a measure of strain was first introduced by Roentgen; in the modern rheological lite-
rature it is called Hencky’s measure of extension.

We now return to the concept of Poisson’s ratio which we shall define as the ratio of lateral to axial
strains. When an incompressible body is extended, in which case no change in volume occurs,

=05 (69)

We have discussed above some measures of small and large strains. This discussion shows that we may use
Ey and p as constants and obtain the following expression for the ¢* as a new constant or characteristic of
the strained state

4
() -2

@ = Z : (70)
N
En

The general approach to the analysis of the problem of the effect of Poisson’s ratio on structural creep
coefficient developing must also be based on formula (70). The form of the function ¢*(u), assuming that
the ¢, = g,/Ey = 0.001 is shown in Fig. 10. Assuming u equal to 1/3 for steel, we obtain ¢* ~ 2.

Results of a new rheological model parameters obtained here identify an important relationship ¢*(p) in the
rheology, which have not been considered before.

The structural creep coefficient versus the Poisson’s ratio

0.01 0.1 1
10000

1000

100

10

1
WMW

0.01

log structural creep coefficient

log Poisson's ratio

Fig. 10. Dependence of creep coefficient on the Poisson’s ratio.
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7. Hysteretic energy dissipation
7.1. The rate of release of viscoelastic energy

The phenomenon of hysteresis, which occurs in various branches of physics, (the lagging of the mag-
netization behind the magnetizing force is known as hysteresis) has been a long-standing topic of research
interest (Lubarda et al., 1992). This paper focuses on the application of the new rheological model to the
description of the hysteretic response of materials subjected to cyclic stress. When model is stretched, the
elastic potential energy is stored in the material, as shown in Fig. 11.

The work required to stretch or compress a model does not depend on the weight of the model. Con-
sequently, gravity is not involved in the measurement of elastic potential energy. Instead, the work required
for the stretching or compressing is dependent upon the elasticity of the model, Fy,

2

O
Uy = 222 4] 71
TR Y (71)

where 4 = A4, (see Fig. 9).
Consider a elliptical loop of the rheological dynamical model shown in Fig. 11, where

d"(t) = c& () = carea cos(wyt — a). (72)

For a cyclic stress variation along the entire loop, the rate of release of viscoelastic energy is equal to the
area enclosed by the loop, i.e.

J
Wiye = ncwasi [W} . (73)
If 7Y = 1/w then the damping ¢ (see formula (19)) is given by
¢ = 2kTP = c.. (74)
o_ﬂ'
A A
'G-A """""""""""""""""

Y

Fig. 11. Elastic potential energy and hysteretic loop dissipation in terms of stress—strain diagram.
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Thus the rate of release of viscoelastic energy is given by
1 (1-r) 1+ @) + &
VVdAve(r) = nk—z ( r) O-ilax ( re ) 2+ 9.
’ Ey 2 1+0
If the area of transfer of energy is cross sectional area A4, then the energy dissipation is given by
Us = AWq ye. (76)

In the special case, at ¢* — 0, we have elastic behavior and the rate of release of elastic energy from formula
(75) as follows

(75)

1 (1—r)?
VVd-,el<r) = nkE~—2H p) imxé'

(77)

As a result the first law of thermodynamics: when heat is converted to another form of energy, or when
other forms of energy are converted to heat, there is no loss of energy, we have

U-U=0-W, (78)

where U, — U, is change in internal energy, Q is heat energy, and W is potential energy of the external loads.

A process in which no heat is added to or removed from a substance is called an adiabatic process. In
such a case: Q =0 and U, = —W + U;. When the cyclic loading in an ideal elastic well-isolated system
permits no heat to enter or leave during the process, the work done on the system equals the change in the
internal energy.

7.2. Fatigue life prediction
It can easily be shown that the total potential energy of the system, IT = U, = U; — W decreases as a

temperature of the system rise. When all elastic potential energy is converted through hysteretic loop
dissipation, we have

Uy = Uy, (79)

and relative frequency J. for theoretical estimation of the fatigue life is
%\ 2 2 2
Ate) 4005 00y 2Ea __ __ DoFn (80)
1 +0.(r) Ank(l —r)62,, wk(l—r)
Number of cycles for fatigue life is
Oe(r
Ne(r) = 5(1 ) , (81)

where 6, = 2nT /¢, is the relative frequency for the first cycle, and ¢, is time (s) when stress ¢, has been
achieved.

7.3. Change in the temperature of the body

High cycle frequencies during the cycling process cause significant temperature rise in the isolated body
and thermal expansion work, Wr as follows

- EH(OCTAT)Z
= f

where ot is a coefficient of linear thermal expansion, and AT [°C] is the difference between the final tem-
perature and the original temperature of the specimen.

Wy Aly, (82)
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As mentioned above, elastic potential energy has to be converted into the thermal expansion work

Uy = Wr. (83)
Difference between the final temperature and the original temperature is given by
L[ 1 (149 +8  oma
AT, =— U+ 9) +9 5 0mm (84)
ot 5e(r) 1 + 0 EH

In the special cases at ¢* — 0 (state of elasticity), we have

1 | g O max
ATel :a m EH ) (85)

where 6 = 6| N (N is the number of cycles).

7.4. Fatigue failure life prediction

We define the total mechanical energy as
Ur=-W+U,+U, =11 + U, (86)

where Us = 2y.4; is the necessary energy to produce a unit area of fracture surface, y, is the specific surface
energy, and A; is the fracture or crack area.
For the Griffith equilibrium state, the rate of release of potential energy is given by

GI = Gcr = 2’))5 (87)

The relative frequency for the fatigue failure life can be most simply explained by the RDA model, which
assumes that the all energy for any fixed crack area is converted through hysteretic loop dissipation

(1+ ") + &) 2}

U=Ur=-W+4+U~+U, =1+ U; = Oc(r) =T + Uy)) ————F5—. 88
oo tram T e
Let us now write down the expression for J. in the case of axial loading and 4, = 4
14 ¢7) + 02 G
( +§D ) 2+ c(r)éc(r): _1+0_2 | (36(1”). (89)
1+0.(r) S Iy

8. Fatigue failure
8.1. The localized reduction of cross-sectional area

Let us calculate the localized reduction of cross-sectional area in center of specimen, (Fig. 9) taking into
account the creep of steel. Initial strain rate takes into consideration delayed elastic is oy /2x or

. a o ¢
&1 =0V— = -, 90
! l() VEH,D lo ( )
where v; = v is the velocity of the particles (see formula (7)).
In this case we can directly apply Bernoulli’s energy theorem

1 1 1 1 1 S
gy +—pA*loéfl—= 62+—pA*loé§l—: 62+—pA*( ! > &, (91)
0 0

2 2 2 Ared
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where A* = 1 is a unit cross-sectional area, o1 = g, and o, is the RDA fatigue limit in symmetrical cycle
(see formula (57)).
Therefore, the localized reduction of cross-sectional area in center of specimen and reduced diameter are:

Ay — 4 ¢ _ of 2Ealy 1 +1 (92)
N ZEHlé 1 T Prea OmaxA* " 1 + @

Ao +1

OmaxA* Q" 1+ @*

8.2. The RDA fracture stress

Let the fracture stress be denoted by . and the cross-sectional area in the narrowest section by 4,4, then

S, Ay
0. = =0 , 93
Ared 2Ared ( )
where S, = S1/(1 4+ ¢*) and S| = 0,4,. Further yields
max 2Ey 3 1
Gy = 8 % T, (94)
(1+¢*) \| onaxd @ 1 + @~

where o, 1S maximum absolute stress in the cycle.
8.3. The maximum applied dynamical stress

Considering the relationship between o, and oy, earlier obtained from condition of fracture, we can

now obtain the maximum applied dynamical stress in symmetrical cycle (» = —1), which results from the
fact that we provide the total fatigue failure life of the bar under axial loading.
EHI(Z) O'ZA*ZQD*Z(I + 90*)4
maxe = —————— | =1 1 c ) 95
e ey | N T Bl )

In the above formula, ¢, is the ultimate or fracture strength under quasi-static loading.
8.4. The RDA rate of release of potential energy

Fracture by the progressive growth of incipient flaws under cyclically varying loads may be formulated

by follow condition
o] 2Exl 1

56(_1) _ ¢1
0e(=1)  req OmaxcA* @™ 1 + @

It is based on the assumption that in period from the fatigue life to the fatigue failure life the reduction of the
cross-section area goes on.
Then, according to above assumption, the RDA rate of release of potential energy will be (see (89))

d)l ) Gﬁnax cl0 4 2EH 1(2) 1 o-rznax.c lo
Gro = 1 <0 G = £l 41 | Dmaxe® 97
: < d)red 2Eq ! O-max.cA* Q" 1+ (08 2Fy ( )

where from the RDA stress intensity factor yields

Klﬁc =\ GI,cEH- (98)
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9. Comparison of experimental and computational results
9.1. Experimental data

Axial fatigue experiment was performed. Temperature data on reinforcing steel bar, @ = 19 mm are used
for their comparison with the RDA results. For a more exact elucidation of the RDA, difference between
the final temperature and the original temperature on reinforcing steel bar was investigated, AT [°C]. The
specimen is loaded at the original temperature of 19 °C, with cyclic sinusoidal load in a symmetrical cycle:
6o = 0, omax = 141 MPa, and frequency, f = f, = 20 Hz. The specimen on which, the work was done was
an isolated reinforced steel bar to reduce the transfer of heat to a minimum. Temperatures of the specimen
under unchanged conditions at ambient temperature are measured after: 10* (8.33 min), 10° (1.388 h),
2 x 10° (2.77 h), 3 x 10° (4.166 h), 4 x 103 (5.55 h) and 5 x 103 (6.944 h) cycles and shown in Table 2 and
Fig. 12.

Table 2

The variations RDA results with number of cycles and test data of temperatures on isolated reinforced steel bar
Number of  Relative ae(—1) AT, (°C) AT, (°C) o (rad) Wy e (J/m?) Wye (Jim?) AT (°C) test
cycles N frequency 6 (MPa) data
1 0.000000889 141 0.0060462 0.0181385 5.9267E-07  0.002698789  0.000299865
10 0.00000889 141 0.0191197 0.057359 5.9267E-06  0.02698789 0.002998654
100 0.0000889 141 0.0604617 0.1813851 5.9267E-05  0.269878897  0.029986544
1000 0.000889 140.99995 0.1911967 0.5735889 0.00059267  2.69878709 0.299865443
10000 0.00889 140.99505 0.6046171 1.8137876 0.00592644  26.985998409 2.998654429 1.5
100000 0.0889 140.50776 1.9119671 5.7158768 0.05904224  267.9978453  29.98654429 5.2
200000 0.1778 139.06638 2.7039298 8.0005474 0.11676375  525.0552298  59.97308857 6.7
300000 0.2667 136.7753 3.3116242 9.6371995 0.71796661  761.8461533  89.95963286 7.2
400 000 0.3556 136.78044 3.8239343 10.884417 0.22367212  971.7977983  119.9461771 8
500000 0.4445 130.25138 4.2752885 11.848133 0.27117424  1151.503824  149.9327214 8.2
600000 0.5334 126.35947 4.6833439 12.591167 0.31404806  1300.461648  179.9192657
700 000 0.6223 122.26122 5.0585895 13.158921 0.35212271  1420.385288  209.90581
800000 0.7112 118.08858 5.4078597 13.587371 0.38543369  1514.385581  239.8923543
900 000 0.8001 113.94542 5.7359014 13.905951 0.4141684 1586.232898  269.8788986
1000 000 0.889 109.9084 6.0461709 14.138829 0.43861491  1639.805902  299.8654429
1948313.62  1.732050807 81.406388 8.4393666 14.617412 0.52359878  1752.695779  584.2319262
2000000 1.778 80.347782 8.5505769 14.617445 0.52345038  1752.703643  599.7308857
3000000 2.667 66.236412 10.472275 14.758424 0.48536234  1786.674979  899.5963286
4000000 3.556 59.195553 12.092342 15.230061 0.42665793  1902.693617  1199.461771
5000000 4.445 55.32028 13.519649 15.912995 0.37240403  2077.157606  1499.327214
6000000 5.334 53.000342 14.810034 16.700784 0.32701074  2287.91187 1799.192657
7000000 6.223 51.515534 15.996665 17.533547 0.28987916  2521.768148  2099.0581
8000000 7.112 50.513462 17.101154 18.379542 0.25948437  2770.989963  2398.923543
9000000 8.001 49.80773 18.138513 19.222088 0.23438997  3030.865883  2698.788986
10000 000 8.89 49.293117 19.119671 20.052515 0.21344291  3298.399599  2998.654429
20000000 17.78 47.589128 27.039298 27.378226 0.11097073  6148.599221  5997.308857
30000000 26.67 47.263201 33.116242 33.301694 0.07453732  9097.000528  8995.963286
40000000 35.56 47.148322 38.239343 38.360018 0.05605108  12070.44222  11994.61771
50000 000 44.45 47.095007 42.752885 42.839306 0.04489597  15053.94901  14993.27214
60000 000 53.34 47.066008 46.833439 46.899212 0.03743832  180402.49844 17991.92657
70000 000 62.23 47.048509 50.585895 50.638105 0.03210293  21033.93236  20990.581
78928 009 70.167 47.038162 53.715051 53.758665 0.02847837  23706.23212  23667.78237
80000000 71.12 47.037146 54.078597 54.121338 0.02809742  24027.17016  23989.23543
90000000 80.01 47.029354 57.359014 57.394837 0.02497997  27021.61102  26987.88986

100000000  88.9 47.023779 60.461709 60.492299 0.02248486  30016.89423  29986.54429




D.D. Milasinovi¢ | International Journal of Solids and Structures 40 (2003) 181-217 205

—i—elastic state —«—viscoelastic state —e—results oftestl

70

w !

50

'Y
20 /

7
'S
10 -1 ‘s

et € 9

tem perature of specimen [celsius]
8
N
N\,

B
11
2

Ao

N

10000 100000 1000000 10000000 100000000
logN

Fig. 12. Computational RDA results of temperatures on testing bar and test data <5 x 10° cycles.

9.2. RDA fatigue results

Material isotropic: elastic modulus, Eyy = 2.1 x 10° MPa; Poisson’s ratio, pu = 1/3; specific gravity, y =
7.86 x 1073 kg/em?; coefficient of linear thermal expansion, op = 125 x 1077 °C~!,
Isolated reinforced steel bar (Iy = 50 cm, ® = 1.9 cm):

_¢r ¢ p_ JE_9 h_l_4x50
I T A A A
Proportional stress:
EHn2_2.1x105xn2

(11‘_0)12; ~105.262

L = 105.26.

o, = = 187.06 MPa > 141 MPa.

E _
p

Structural creep coefficient:

4
4
1Wp -1 2EH 1) _ 1] 210000
15 op 1- 035X 2x187.06

* *

P = 7] , @ = - _
— 1 210000

1 E _ 1 B
- [<1%> B 1] 20 : KIW) 1} 2x187.06

RDA viscoelastic modulus:
En b 2.1x 10°

EQ = o B 7 = 1.05 x 10> MPa.
RDA viscoplastic modulus:
Ay 1.9 7.86 x 1073
HP = 20 g — 27 XXX T 000891 kg /cm?.

I’ 4% 50

RDA dimensional parameter:

2
lo
k 105.267
R— (—2)pH/D’ R= -—0.000891 = 1 kg/cm?.
T T
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Dynamic time of retardation:

5 7860

Original loading time:
Let us choose, ¢ = t, (, is time when proportional stress ¢, has been achieved) from creep data (Kojic,
1997):

€ = a1, ag=20x10"7 a =30, a=12, t,[h), Ey[MPa,

pp’

12 P 1.2 2 .
= = == 11. = .
& 60( \/2 x 109 x 0 EH> 60( \/2 x 109 x 1872 x 2.1 105> 38 min = 683 5

Relative frequency or ratio 0.

N
0= % = 2nfTY = 0.000607584 f = 0.000607584t— = 0.000000889N.
P

Fatigue limit in a symmetrical cycle:

(1+¢)+6 1 94461
5 1 oA — —2§1417
1+6 + ¢ 1+6

1

Relative frequency for theoretical estimation of the fatigue life, r = —1:

loEx <%y < 50 y
Se(-)=——"2 = =) = =70.167.
=1 nk(l —r)>  \¢n 19%xn

Number of cycles for the fatigue life:
_ 0.(=1)  70.167
Ne(=1) = 5 0.000000889

fimee(—1)

= 78928009c¢.

Fatigue life:
-1 2
te(—l):Ne( ):789 8009
fo 20
Change of temperature of the bar:

A~ L [0 w1 [ 141
T \[0u(r) En  125x 1077V 70.1672.1 x 105

ap L L o)+ om ] 5 9+ 141
YT \oe(r) 1407 En 125x 1077\ 70.167 1 + 67 2.1 x 105

Phase angle:

= 3946400.45 s = 45.6759 days.

00 29 max tano = @ max tano = = 0.57735.

2
1+ +¢ 340 e 2/T+0’ =1732 24/3

tano =
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The rate of release of viscoelastic energy.

1, (1+¢)+8 . . 0.000283528 14129+52
1+ 6

— — _ = 6
Wise(—1) 2nkE12{amax T "0 0 S % 10°.

The rate of release of elastic energy:

1 .00028352
VVd,el(—l)ZZTEkE—ZO'Z 5 — 2 0002838 a5
H

fmax 2.1 x10° x 0.5

Strength in tension: yield strength, ¢y = 400 MPa; ultimate strength, g. = 500 MPa.

Maximum applied dynamical stress:

E‘l2 2A*2 *21 «\4
gmax’c:%[_l%_\/l_i_ac o +<p>],

A*p*(1 + ¢ E} I3

2.1 x 10° x 0.52

Omaxc = m = 127.64 MPa.

14 5002 x 1 x 22 x (1+2)*
(2.1 x 105)* x 0.54

Reduced diameter:

O _of 2Ealy 1 :</2><2.1><105><0.52 L s
Prea OmaxcA 0" 1 + @ Drea 12764 x1x2 1+2

RDA rate of release of potential energy:

127.64% x 0.5

G Oy 1) Twelo o 3074
be ™ ¢red+ 2Fy e =0 +1)

RDA stress intensity factor:
Kic = \/GiEn, Kic= v0.08588 x 2.1 x 100000 = 134.294 MNm /2.

Relative frequency for theoretical estimation of the fatigue failure life:

2x2.1x10

Gie Tmaxe 127.642
=1 -1 : 1 ly = .5 =10.019395201 MP
de(—1) ( o )56( b Sl =55 1y g8 X 0-5 = 0.019395201 MP/m
2Fy
= 19.40 kJ/m?,

So(—1) = ( ~1 +%)70.167 = 3.427 x 70.167 = 240.45.

Number of cycles for the fatigue failure life:
d.(—1) 240.45
—1 = =

Ne(=1) 01 0.000000889

Fatigue failure life:
N.(=1) 270470827

t(—1) = (=1) =

Jo 20

=270470827c.

= 13523541 s = 156.52 days.

= =0.08588 MJ/m’ = 85.88 kJ/m’.
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9.3. Griffith’s theory of fracture results

For the classic Griffith’s crack, the stress intensity factor is given by

K = g.\/ma. (99)
For other geometries the stress intensity factor can be written as
K1 = onv/maF (a/b), (100)

where oy 1s the nominal stress at the crack, and F is a geometric factor that depends upon the geometry of
the specimen and can be found in stress intensity handbooks such as Tada et al. (1973) and Rooke and
Cartwright (1976).

Consider a crack of the specimen shown in Fig. 16, where

Fl(a/b) = %tan(ﬂ),

2
o, 19 19 — 5.542
b=19mm, ¢,.q= 3428~ 3408 5542 mm, a= — = 6.7287 mm, (101)
2x19 T X 6.7287
6.7287
K1 = 500 nml.os724 = 76.8568 MNm /2,

K2 76.85682

G = =0.028128 MJ/m’* = 28.128 kJ/m”.

Eq  21x105
Because of the circular crack yields:

G; =28.128 x m = 88.368 kJ/m?,

K; = /GiEx = V0.088368 x 2.1 x 100000 = 136.225 MNm /2,

9.4. Discussion

Experimental data are shown for six different numbers of cycles. There is a very good compatibility
between the experimental data and the RDA results in the first three time periods (2.77 h), as shown in Fig. 12.
The RDA results are not well compatible with test data for the latter time periods (6.944 h). The reason for
that is a contact between heads of the testing machine and specimen, which could not be isolated to prevent
the flow of heat through a metal.

The phase angle between the applied stress and subsequent strain is shown in Fig. 13. The maximum
phase angle, 6 = 1.732, N ~ 2 x 10° is measure of the maximum difference between the rate of release of
viscoelastic energy and the rate of release of elastic energy (see Fig. 14). At very high frequencies, 6 ~ 20,
NG& ~ 2 x 107 the stress and strain are in phase. Frequencies between & ~ 0.1, N ~ 2 x 10° and ~20,
N ~ 2 x 107 allow some viscous flow, the strain lags the stress, and this is range when the fatigue appears
(see Fig. 15).

Relative frequency for the fatigue life is d.(—1) = 70.167, (Ne(—1) = 78928009¢ and #.(—1) = 45.676
days). This is a number of cycles when the elastic potential energy is converted through hysteretic loop
dissipation. Relative frequency for the fatigue failure life is d.(—1) = 240.45, (N.(—1) = 270470827¢ and
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Fig. 14. LogN dependence of difference between the rate of release of viscoelastic energy and the rate of release of elastic energy of
testing bar.

t.(—1) = 156.52 days). Although the RDA rate of release of potential energy, Gy, = 85.88 kJ/m? is 4.427
times great as the rate of release of elastic energy, Wy (—1) = 19.40 kJ/m? the fatigue failure life is only
3.427 times long as fatigue life because some part of the total mechanical energy (elastic potential energy) is
converted through hysteretic loop dissipation and remainder is stored in the material and produced failure.

Two various methods of determining the rate of release of potential energy, G; have been analyzed. The
emphasis has been to show that RDA method enables the rate of release of potential energy to be calculated
from this theory, differently obtained by Griffith theory, or experimentally. On the basis of the comparison, the
present method is regarded as valid and suitable (RDA: G;. = 85.88 kJ/m?, K;. = 134.294 MNm3/?;
Griffith: G; = 88.368 kJ/m?, K; = 136.225 MNm~3/?),
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Fig. 15. Axial fatigue curve of testing bar.
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Fig. 16. External crack system of reinforced steel bar considered by Griffith’s theory.

On the other hand the test values are approximately given in handbooks such as Ashby and Jones (1980):
G = 100 kJ/m?, K = 140 MN m /2.
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10. RDA fatigue crack propagation
10.1. Crack propagation of long bar with circular cross-section

The cracks may initiate early in service life (period from the fatigue life to the fatigue failure life) and
propagate subcritically. The general approach to the analysis of the problem of the effect of maximum
absolute stress in the cycle, o, on crack length must also be based on Bernoulli’s energy theorem and
localized reduction of cross-sectional area. Fatigue crack length as shown in Fig. 9 is

azl ¢ — h

2 of B0
omaxA*@* 1+¢*

(102)

+1

For cracks subjected to cyclically varying loads, maximum and minimum stress intensity factors, K., and
Knin, defined at the extremes of the cycle, are assumed to prescribe crack growth. The stress range under
cyclic loading is

Ao = Omax — Omin — (1 - r)o-ma)n (103)
thus the RDA rate of release of potential energy range and stress intensity range are:
o, ) (1 —r)a>, lo
AG .= —+1|——~ B 104
b < ¢red 2EH ( )

AKi . = \/AG Eq. (105)

Crack growth and stress intensity range values are calculated by the RDA method (Table 3), on the above
testing bar and finally presented in the form of log-log plots of a/N, versus AK;. (Fig. 17).

A Omax, Maximum absolute stress in the cycle (42.50-268.50 MPa).
B fi = {Vii‘z)* —L_ 41, the ratio of initial diameter to the reduced diameter
Dred TmaxA*@* 1+
C a=31|¢ - ﬁ , fatigue crack length
Tt

Table 3

Calculation of RDA fatigue crack growth a/N,
A B C D E F G H
42 49.8691603 1E-10
42.5 4.50739521 7.392353 2732.208777 3073350705 0.011842539 49.8691603 2.40531E-09
60 4.136121762 7.203162 1335.886124 1502684054 0.02201195 67.98904019 4.79353E-09
80 3.850190525 7.03259 720.7378823 810728776.4 0.036953833 88.09259243 8.6744E-09
100 3.642320574 6.891773 436.0121246 490452333.7 0.055265721 107.7302253 1.40519E-08
120 3.481017163 6.770913 281.346281 316475006.7 0.076817437 127.010479 2.13948E-08
140 3.350368959 6.664491 188.0876554 211572165.8 0.101508609 146.0027667 3.14998E-08
160 3.241288431 6.569067 127.5592206 143486187.4 0.129258314 164.7551091 4.57819E-08
180 3.148128412 6.482334 86.06112489 96806664.67 0.159999239 183.3025917 6.69617E-08
200 3.067155663 6.402668 56.37778116 63417076.67 0.193674079 201.6719034 1.00961E-07
220 2.99578236 6.328875 34.41546377 38712557.67 0.230233174 219.8839843 1.63484E-0-7
240 2.932146015 6.260052 17.71132025 19922744.94 0.26963287 237.9556736 3.14216E-07
260 2.874864654 6.195497 4.711568734 5299852.344 0.311834346 255.9007867 1.16899E-06

268.5 2.852177957 6.169212 0.045696183 51401.78067 0.330609734 263.492019 0.000120019
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Crack growth (r=0, I=50cm, d=1.9cm, I/d=26.3)
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Fig. 17. Fatigue crack growth (a/N, (mm/cycle)) as a function of stress intensity range (AK;. (MN(m~3/2))) of testing bar (I,/® = 26.3).

D Oc(—1)=0.(-1)| =1+ HZG e 1, relative frequency for the fatigue failure life
) 2, 10
E N, = "“E;l), number of cycles for the fatigue failure life; 6; = 0.000000889, relative frequency for the
first cycle
AG . = (q;L‘d + 1) %, RDA rate of release of potential energy range

G AKi. = \/AGi.Eu, RDA stress intensity range.
H o RDA fatigue crack growth.

The sigmoidal variation of fatigue crack growth with AKj is obtained from RDA calculation (» = 0) in
terms of three regimes, as shown in Fig. 17. Curve in the second regime are compared to the best fit line of
power-law (axis intercept, C = 1.5 x 107133, slope of crack growth curve, m = 2.7).

This is evident from the fact that the crack growth relationship obtained here by RDA is very similar to the
experimental crack propagation data.

The crack growth relationships most often used in engineering defect-tolerant design and lifetime cal-
culations are based on mere empirical curves. Perhaps the safest approach to this problem has been to
develop semiempirical relationships based on physical models for crack growth and then to determine the
constants in the model by fitting to relevant experimental data.

10.2. Coefficient of asymmetry of cycle effect

The variation in the constant C with coefficient of asymmetry of cycle, r of above testing bar is shown in
Fig. 18. At a given stress intensity range, crack growth or constant C increases with increasing coefficient of
asymmetry of cycle. This effect named here as coefficient of asymmetry of cycle effect is known as load ratio
effect. Similar behavior has been observed by Paris et al. (1972) in tests on AS533B-1 steel specimens.

10.3. RDA fatigue size effect

Fatigue crack propagation data are generally measured using standard fracture mechanics-type specimen
geometries, such as the compact tension, edge-notched bend, edge-notched tension, center-cracked sheet test-
pieces, and so forth.
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Coefficient of asymmetry of cycle effects on crack
growth, I=50cm, d=1.9cm, 1/d=26.3
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Fig. 18. Influence of coefficient of asymmetry of cycle on fatigue crack growth as a function of stress intensity range.

Diameter effects on crack growth (r=0)
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Fig. 19. Influence of diameter on fatigue crack growth as a function of stress intensity range.

Length effects on crack growth (r=0)
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Fig. 20. Influence of length on fatigue crack growth as a function of stress intensity range.
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In this section of the paper, the RDA modeling technique is used to investigate what is referred to here as
the RDA fatigue size effect (see Figs. 19 and 20). The mechanical characteristics of testing bar are used in
the calculation.

At a given stress intensity range, crack growth or constant C increases with increasing of diameter, but
decreases with increasing of length of steel specimen. On the other hand, there is no changing of the slope of
crack growth curve (m = 2.7).

11. Fatigue crack growth rate

According to the original analysis of Paris and his co-workers, the crack growth increment per cycle in
fatigue (da/dN) can be described in terms of a power law function of the range of Kj, given by the alter-
nating stress intensity (AK = Kpax — Kmin), thus:

da
—— = CAK™ 106
av ~ CAKY (106)

where C and m are scaling constants for a particular material-heat-treatment condition. For structural steel:
C ~1.5x107" m ~ 2.75 — 3.0. Test data are used to construct crack length versus number of cycles N
plots, which are then differentiated, either graphically or numerically, to determine the rate of crack growth
(da/dN) for each crack length a;.

First, to demonstrate the ability of the RDA analysis on fatigue crack growth rate, the axial fatigue setup
of testing bar is used for results comparison obtained here by RDA modeling technique and a best fit line of
Paris power-law (see Fig. 21).

The latter in order to demonstrate the effect of size on fatigue crack growth rate, the various sizes of
reinforcing steel bars are analyzed and compared with a best fit lines of Paris power-law. The slope of crack
growth rate curve, m = 2.7 is not sufficiently different to be of interest, but axis intercept indicate fatigue
size effect. Now, this fatigue size effect may be defined as the increase in constant C with decreasing of ratio
lo/ ¢ of specimen. Specimen, ¢ = 2.5 cm and /¢ = 5 (see Fig. 22) have scaling constant, C = 1.5 x 107"
very similar to structural steel.

Crack growth rate {r=0.7, I=50cm,d=1.9cm.lid=26.3)

10 100
0.00000001

— =

e =]

H el
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3 1E410

=

>

2
1E411

log (stress intensity range)

|—Paris powerdaw, m=2.7, C=2*10~(-13.4) —— RDA

Fig. 21. Fatigue crack growth rate (da/dN, (mm/cycle)) as a function of stress intensity range (AK;. (MN(m~*?2))) of testing bar
(Io/ P = 26.3).
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Crack growth rate (r=0.7 1=12.5¢cm,d=2.5cm|id=5)
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Fig. 22. Fatigue crack growth rate (da/dN, (mm/cycle)) as a function of stress intensity range (AKj. (MN(m~*2))) of smaller bar
(lo/® = 5).

Let us examine a specimen with //¢ ratio of 5, which RDA results of fatigue growth rate are in good
accordance with scaling constants of structural steel in terms of Paris power-law.

Slenderness ratio is 20 and the critical stress for it under quasi-static loading is yield sterss oy
(Milasinovi¢, 2000). Then it can be easily established (Fig. 6., Haigh type diagram) that line determined
under variable loading should be taken as the line of critical stresses.

()limae(l) = oy = 400 MPa,

1
limo.(0) = = (1 i >aY =267 MPa,

0—00 2 1 + QD*
. 1
()lLHOlCGe(—l) = T(p*o'y =133 MPa.

Now for this specimen the fatigue limit, o, (—1) is in compliance with test results of axial fatigue of steel
specimens (ge(—1) ~ 0.28 x o, = 0.28 x 500 = 140 MPa).

12. Conclusion

In the course of his research work, this author has developed a new model of viscoelasto-plastic material,
which is able to describe the mutual interaction of elasticity, viscoelasticity and viscoplasticity. Based on
this model, the RDA is established as the theoretical concept for studying the inelastic material deforming
of materials and structures as well as to solve the dynamical problems. By the RDA we involved one very
complicate nonlinear viscoelasto-plastic problem into a simpler linear dynamical one.

After examining the physical mechanism of the RDA on the base of energy transfer by mechanical wave
motion, the subsequent sections give discussion of different special situations for the axial fatigue behavior
in steel members. The main conclusions obtained are as follows:

(1) The theoretical value of the fatigue limit under constant stress amplitude is given by the following
formula:

1 1+ +6 1
Ue(r)zio-max Il+r+(1—7r) ( 1_:52 T+ o
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The proposed S—N curves are based on extensive theoretical studies using a newly proposed rheological model
and RDA. Unlike previously available and purely empirical S-N curves, the newly developed S—-N curves take
into account the mechanical aspects of fatigue and cater for the influence of creep (creep coefficient) of
material on the fatigue limit. However, comparison between the presently recommended design RDA S-N
curves and those recommended by other methods, and previously available S-N curves are possible only
for the same samples and experimental conditions.

(2) Results of a new rheological model parameters obtained in the paper using Bernoulli’s energy theorem
identify an important relationship, ¢*(u) in rheology, which have not been considered before.

(3) The theoretical value of the rate of release of viscoelastic energy obtained by RDA description of the
hysteretic loop dissipation is given by the following formula:

L=, (+0)+0,

Wa.v = nk—
d, e(}”) T E12L1 2 O'max 1+52

As a result, from the above formula and from the first law of thermodynamics we obtain: the relative
frequency J.(r) for theoretical estimation of the fatigue life, the change in the temperature of the body and
the relative frequency J.(r) for theoretical estimation of the fatigue failure life.

(4) The general approach to the analysis of the problem of fatigue failure is based on Bernoulli’s energy
theorem from which localized reduction of cross-section area is defined. Furthermore, the RDA fracture
stress o, and the maximum applied dynamical stress .y are obtained.

(5) The RDA rate of release of potential energy, G;. has been analyzed under the hypothesis that in period
from the fatigue life to the fatigue failure life the reduction of the cross-section area goes on. In the case of
axial loading of long bar with circular cross-section it is expressed by the following formula

G — 4 2EHZ% 1 +1+1 O-rznax,clo
I‘C GnlaX(CA*gD* 1 + ¢* 2EH '

Two various methods of determining the rate of release of potential energy Gy have been compared. The
emphasis has been to show that RDA method enables the rate of release of potential energy to be calculated
from this theory, differently obtained by Griffith’s theory, or experimentally. On the basis of the com-
parisons, the present method is regarded as valid and suitable (RDA: Gj. = 85.88 kJ/m?, K;. = 134.294
MN m~*?; Griffith: G; = 88.368 kJ/m?, K; = 136.225 MNm~3/?).

(6) Axial fatigue experiment of reinforcing steel bar was performed. After the experimental investigations it
may be concluded that the presented RDA method is well confirmed by the temperature measurements.

(7) The sigmoidal variation of fatigue crack propagation with AKj. is obtained from RDA calculation in
terms of three regimes. Curve in the second regime is compared to a best fit line of power-law. This is evident
from the fact that the crack propagation relationship obtained here by RDA is very similar to the experimental
crack propagation data.

At a given stress intensity range, crack growth or constant C increases with an increase of coefficient of
asymmetry of cycle. This effect named here as coefficient of asymmetry of cycle effect is known as load ratio
effect.

The RDA modeling technique is used to investigate the effect of size on fatigue crack growth. At a given
stress intensity range, crack growth or constant C increases with an increase of diameter, but decreasing
with an increase of length of steel specimen. On the other hand, there is no changing to the slope of crack
growth curve, m = 2.7. This is referred here as the RDA fatigue size effect.

(8) The ability of the RDA analysis on fatigue crack growth rate is demonstrated. The axial fatigue setup of
testing bar is used for results comparison obtained here by RDA modeling technique and a best fit line of
Paris power-law.
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To demonstrate the effect of size on fatigue crack rate, the various sizes of reinforcing steel bars are
analyzed and compared with a best fit lines of Paris power-law. The slope of crack growth rate curve,
m = 2.7 is not sufficiently different to be of interest, but axis intercept, C indicate fatigue size effect. This
effect of size on fatigue crack growth rate is defined here as the increase in constant C with decreasing of
ratio ly/¢ of specimen.

Due to the present observation, fundamentally new, our understanding of fatigue may be achieved. The
analytical RDA method is valid and suitable for modeling of fatigue behavior.
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