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Abstract

Present paper relates to the analysis of fatigue and fatigue failure of thin long steel bars with the application of a new

rheological model and rheological–dynamical analogy (RDA). The analogy has been developed on the basis of

mathematical–physical analogy between rheological model and dynamical model with viscous damping, and is aimed to

be used for the analysis of inelastic deforming of materials and structures. In this presentation, the aim will be to

highlight different aspects of fatigue behavior and fill the gap that other methods cannot. This paper provides a nu-

merical example of obtaining S–N curves of thin long steel bars using RDA model and description of the hysteretic

energy dissipation of material subjected to cyclic stresses. First the axial fatigue setup and the experimental results are

discussed. The latter in order to demonstrate the ability of the RDA modeling technique, the comparison with Griffith�s
theory of fracture is presented. RDA method for fatigue crack growth rate is proposed and compared with Paris power

law. On the basis of the comparisons, the present RDA method could be considered as valid and suitable for modeling

of fatigue behavior.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The failure of materials under a variable load at stresses lower than the ultimate strength is called fatigue

failure. This name does not reflect the physical nature of the phenomenon, but it has become such a

customary term that it is used to this day.

Experiments show that under alternative tension or compression a decrease in the acting force results in

an increase in the number of alterations of this force required breaking the specimen. Each material has a
maximum normal stress at which the specimen can withstand practically unlimited number of alterations of

the force without breaking down. This stress is denoted by re (stress when the fatigue crack appears) and is

called the fatigue limit or the endurance limit.
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Nomenclature

a crack length

a0, a1, a2 material constants

A, A1, A2 cross-sectional area of the bar

Ared reduced cross-sectional area of the bar

As fracture area or crack area

A� unit cross-sectional area
A, B, C constant of integration

b sample width

c phase velocity of mechanical wave

c, cc viscous damping, critical damping

C axis intercept

da=dNc rate of crack growth

deH infinitesimal extension

dl infinitesimal change of the length
EH slope of the elastic strain or Young�s modulus

EK slope of the viscoelastic strain or viscoelastic modulus

ED
K dynamic viscoelastic modulus

f frequency of external force

fr frequency of a variable stress cycle

F geometric factor

g gravity acceleration

GI, G�
I Griffith�s rate of release of potential energy

GI;c RDA rate of release of potential energy

H symbol for the Hooken spring

H 0 slope of the viscoplastic strain or viscoplastic modulus

H 0D dynamic viscoplastic modulus

Iz moment of inertia (of cross-section)

k stiffness

kz radius of gyration

K symbol for the Kelvin�s body: K ¼ HjN
KI, K�

I stress intensity factor

KI;c RDA stress intensity factor

Kmax maximum absolute stress intensity factor

Kmin minimum absolute stress intensity factor

l0 unstretched length of the bar

lp length of the bar for slenderness ratio on proportional limit

m mass

m slope of crack growth curve
N symbol for the Newtonian dashpot

N number of cycles in the loading time

Ne number of cycles for fatigue life

Nc number of cycles for fatigue failure life

P compression external force

Pr constant of integration
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Q heat or thermal energy

Qr constant of integration
r coefficient of asymmetry of cycle

R RDA dimensional parameter

S, S1, S2 tension external force

StV symbol for the Saint-Venant�s body
t time

t0 initial instant of time

tc fatigue failure life

te fatigue life
tp time when proportional stress has been achieved

t � t0 time difference

T � time of retardation in the viscoplastic yielding

TK time of retardation

TD
K dynamic time of retardation

u displacement of the particles

U1, Ue elastic potential energy

Ud hysteretic energy dissipation
Us energy to produce a unit area of fracture surface

UT total mechanical energy

U2 � U1 change in internal energy

v, v1, v2 velocity of the particles

W potential energy of the external forces

Wd;el rate of release of elastic energy

Wd;ve rate of release of viscoelastic energy

WT thermal expansion work
Y stress level for viscoplastic yielding

a phase angle

aT coefficient of linear thermal expansion

c specific gravity

cs specific surface energy

d ratio of load frequency to the frequency of natural vibrations or relative frequency

d1 relative frequency for first cycle

dc relative frequency for fatigue failure life
de relative frequency for fatigue life

DGI;c RDA rate of release of potential energy range

DK stress intensity range

DKI;c RDA stress intensity range

Dl, Dl1, Dl2 increase in length

DT , DTve, DTel difference between the final temperature and the original temperature

Dr stress range

e total inelastic strain
el axial strain

et lateral strain

eH Hencky�s measure of extension
_ee, _ee1, _ee2 strain rate
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€ee strain acceleration

eh complementary strain
ep particular strain
_eep particular strain rate

e0 strain due constant stress

ec creep strain

e00p strain vary periodically or sinusoidal with time

eA cyclic strain amplitude

eel elastic strain

eve viscoelastic strain
_eeve viscoelastic strain rate

evp viscoplastic strain
_eevp viscoplastic strain rate

g RDA dynamical coefficient

kK viscoelastic coefficient of normal viscosity (Trouton�s coefficient)

kN viscoplastic coefficient of normal viscosity (Trouton�s coefficient)

kP slenderness ratio on proportional limit

l Poisson�s ratio
lH Poisson�s ratio for the Hencky�s measure of extension

P total potential energy

q mass density

r, r1, r2 variable stress
_rr stress rate
€rr stress acceleration

r0 constant stress or mean cycle stress

r00 stress vary periodically or sinusoidal with time
rA amplitude of stress

rp proportional stress

rE
p Euler�s proportional stress

rRDA
p RDA proportional stress

rcr critical stress

rSV stress in the Saint-Venant�s element

rY uniaxial yield stress

rmax maximum absolute stress in the cycle
rmin minimum absolute stress in the cycle

rmax;c maximum applied dynamical stress

re fatigue limit

rN nominal stress at the crack

rc RDA fracture stress

u creep coefficient

u� structural creep coefficient

U, U1, U2 diameter of the bar
Ured reduced diameter of the bar

x circular natural frequency

xr stress circular frequency
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The physical phenomenon of fatigue was first seriously considered in the mid-nineteenth century when
widespread failures of railway axles in Europe prompted W€oohler (1867) in Germany and Fairbairn in

England to conduct the first systematic investigations into the fracture of materials under cyclic stresses

around 1860.

However, the main impetus for research directed at the crack propagation stage of fatigue failure, as

opposed to mere lifetime calculations, did not occur until the mid-1960s when the concepts of linear elastic

fracture mechanics (LEFM) and so-called ‘‘defect-tolerant design’’ were first applied to the problem of

subcritical flaw growth. Griffith (1921, 1925) used the solution of Inglish (1913) to determine the rate of

release of potential energy. Orowan (1948) and Irwin (1948) saw that a plastic zone forms at the tip of a
crack in high strength metals and, provided this zone is small, the plastic work required to create a unit area

of fracture surface is a material constant that can be added to the surface energy. Crack surface opened

under load and Wells (1961) suggested that in metals, fracture occurs when the crack tip opening dis-

placement reaches a critical value. The concept is most readily applied in conjunction with the fictitious

crack model of Hillerborg et al. (1976). Although he did not call it a fictitious crack, the concept was first

applied by Dugdale (1960) to the problem of a Griffith crack in an elasto-plastic solid.

This approach recognizes that all structures are flawed, and that cracks may initiate early in service life

and propagate subcritically. Lifetime is then assessed on the basis of the time or the number of loading
cycles for the largest undetected crack to grow to failure, as might be defined by an allowable strain, or limit

load or fracture toughness (KIc) criterion. Implicit in such analyses is that sub critical crack growth can be

characterized in terms of some governing parameter (often thought of as an effective ‘‘crack driving force’’)

which describes local conditions at the crack tip yet may be determined in terms of loading parameters,

crack size and geometry. Linear elastic and elastic–plastic fracture mechanics have, to date, provided the

most appropriate methodology for such analyses to be made, and consequently, considerable effort has

been directed towards defining parameters which uniquely stress and strain fields at the crack tip over

length scales characteristic of the local fracture mechanisms involved.
The concept of directly applying fracture mechanics to subcritical fatigue crack growth was first suggested

by Paris et al. (1961) in their famous ‘‘Rational Analytic Theory of Fatigue’’. Despite difficulties in finding

the physical nature of the phenomenon, their proposal of correlating fatigue crack propagation rates

(da=dN ) with the stress intensity factor (KI) has remained the basis of the defect-tolerant fatigue design

approach ever since. The rate of growth of a crack caused by fatigue loading is approximately given by Paris

law (Paris and Erdogan, 1963). This law has found wide applicability for fatigue growth of cracks in metals.

Based on the concept that crack tip stress and deformation fields in an elastic–plastic strain hardening

solid can be described by the Hutchinson–Rice–Rosengren (Rice and Rosengren, 1968) singularity and thus
uniquely characterized by the J -integral, Dowling (1976) suggested that fatigue crack propagation in the

presence of extensive plasticity could be correlated to the range of J , that is, DJ , which under linear-elastic

conditions would be equal to DK2=E, where DK is stress intensity range.

Although fatigue represents one of the major causes of failure in engineering service, a complete un-

derstanding the mechanical fatigue due to cyclic stress has not yet been reached. Good progress might be

made by using rheological–dynamical analogy (RDA). In the course of my research work I developed a new

model of viscoelasto-plastic material that is able to describe the mutual interaction of elasticity, visco-

elasticity and viscoplasticity. Based on this model, the RDA is established as the theoretical concept for
studying the inelastic material deforming. This analytical concept has been already used and proved

j symbol for parallel connection

–– symbol for serial connection
H–K–ðNjStVÞ symbol for a new rheological model
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through several inelastic problems (Mila�ssinovi�cc, 1996, 1997, 2000). The employed RDA is based on a new

rheological model, H–K–(NjStV), of viscoelasto-plastic material, and mathematical–physical analogy be-

tween rheological model and dynamical model with viscous damping. It occurs only when there is the

arrangement of five fundamental elements making up the body as shown in Fig. 1b. The parameter H 0 (the

slope of the viscoplastic strain), furthermore, must be included in the yield condition. All of the other

previously mentioned combinations with less or more fundamental elements could not restore this analogy.
Furthermore when dealing with development of the mathematical–physical models for fatigue behavior the

main advantages of the RDA formulation are associated with its simple and rigorous mathematical–

physical structure allowing for analytical solutions.

The objective of the present paper is to explain the physical mechanism and to find the experimental

proof for the new rheological model and RDA. Theoretical consideration has also been made to confirm

the applicability of RDA method that other methods cannot. The present paper presents newly developed

S–N curves from relationships such as the RDA describes the form of the constant amplitude. Closed form

analytical solutions for the rate of release of viscoelastic energy were derived as well as the fatigue life, the
fatigue failure life, and the change in the temperature of the body. Furthermore, Bernoulli�s energy theorem
is used for the evaluation of the localized reduction of cross-section area, from which we obtain: the

fracture stress, the maximum applied dynamical stress, the rate of release of potential energy, and fatigue

crack growth rate.

For a more exact elucidation of the RDA, this author is introduced RDA prediction to simulate ex-

perimental results of the increased temperature of the specimen under axial fatigue, including distinction

between viscoelastic and elastic behavior.

Due to the present observation, fundamentally new, our understanding of fatigue behavior can be
achieved.

2. A new rheological model

The results of experimental research of strains show that their development and magnitude are dependent
on time, and because of that the rheological analysis proves unavoidable. Elasticity, plasticity, viscosity and

Fig. 1. (a) Change of strain according to the proposed model. (b) A new rheological model of viscoelasto-plastic body.
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strength are essential rheological properties from which most of other complex properties may be derived

(Reiner, 1955). The ideal bodies, typifying the three fundamental properties of elasticity, plasticity and

viscosity, can be conveniently represented by the following rheological models (Hookean spring, Saint-

Venant�s resistance and Newton�s dashpot). Combining the rheological elements, various structural rheo-
logical models illustrating the stress–strain relationships of technical media can be obtained.

As stated earlier, the majority of materials are in the state of elasticity and viscoelasticity in the con-

ditions of low loading, whereas after reaching the yield stress, it transits to the state of viscoplasticity. Every

strain is in principle a function of time because a stress is always introduced into the body during a definite

time interval (even a very small one) and therefore the distinction between a time-dependent strain and a

strain not depending on time is very uncertain. Here, it is assumed that the strain is measured when the

specified stress has been reached. Strain eel obtained in this way shall be considered to be independent of

time, i.e. instantaneous. Then the time-dependent, or delayed, eve and evp strains are measured from the
time, when the instantaneous strain has developed. Elastic material behavior can be modeled by a linear

spring (H). Therefore, instantaneous or initial strain should be eel ¼ r0=EH where EH is the elastic modulus.

Delayed elastic or viscoelastic strain eve may be imagined as a common behavior of elastic EK and viscous

kK materials. A piston exerting pressure on a liquid with a viscosity kK represents ideal viscous material.

Viscoelastic material behavior can be modeled by Kelvin�s model (K), where the elastic and viscous ele-

ments are linked in parallel. The concept of delayed plastic or viscoplastic material behavior evp may be

imagined as a common behavior of the friction slider component rSV and viscous component kN of ma-

terials. The friction slider develops a stress rSV, becoming active only if rP Y ¼ rY þ H 0evpðtÞ, where r is
the total applied stress and Y is some limiting yield value. The stress level in the friction slider depends on

whether the threshold or yield stress Y , has been reached. If the stress r is discontinued, the friction slider

does not return into its original position. Viscoplastic material behavior can be modeled by the third of the

sequentially linked models (NjStV) as shown in Fig. 1b. Initial strain rate should be _ee ¼ r0=kK þ
ðr � r0Þ=kN.

Summarizing the above-mentioned assumptions, a new rheological model may be presented by the

following structural equation:

H–K–ðNjStVÞ: ð1Þ

The corresponding differential equation (Mila�ssinovi�cc, 2000) is

€eeðtÞ þ _eeðtÞ EK

kK

�
þ H 0

kN

�
þ eðtÞEKH 0

kKkN

¼ €rrðtÞ
EH

þ _rrðtÞ EK

kKEH

�
þ H 0

kNEH

þ 1

kK

þ 1

kN

�

þ rðtÞ EK

kKkN

�
þ H 0

kKkN

þ EKH 0

kKkNEH

�
� rY

EK

kKkN

: ð2Þ

The homogeneous equation of the inhomogeneous equation (2) has the following form

€eeðtÞkKkN þ _eeðtÞðEKkN þ H 0kKÞ þ eðtÞEKH 0 ¼ 0; ð3Þ

where kK, kN, EK and H 0 are given constants at fixed step time.

3. Physical mechanism of the rheological–dynamical analogy

3.1. A mechanical waves

Of the different ways in which energy can be transferred, the wave-transfer mechanism is unique in that

energy is transmitted without the physical transfer of material from the source. A mechanical wave is a
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disturbance that moves through mater. To produce mechanical waves, we need a source of energy which

produces a disturbance, and an elastic medium to transmit the disturbance. The elastic medium obeys

Hooke�s law. The propagation of waves in a uniform isotropic medium can be described by a partial

differential equation, called the wave equation (Timoshenko and Goodier, 1951). Thus

o2u
ot2

¼ c2
o2u
ox2

�
þ o2u

oy2
þ o2u

oz2

�
: ð4Þ

Let us imagine a thin long symmetrical bar (say, with a square or circular cross-section), with the length l0
and the circular cross-sectional area A. Then the wave equation may be represented in the following form

o2u
ot2

¼ c2
o2u
ox2

: ð5Þ

Here u is displacement of the particles. The propagation of longitudinal waves in a thin long bar is asso-

ciated with its longitudinal tension and compression. Hence, the phase velocity of such waves is

c ¼
ffiffiffiffiffiffi
EH

q

s
; ð6Þ

where q is the density of the undisturbed medium.

The velocity of the particles is

v ¼ ceel ¼
rffiffiffiffiffiffiffiffiffi
EHq

p ; ð7Þ

where r ¼ S=A is stress or the ratio of the internal force, S to the cross-section area, A, and eel ¼ Dl=l0 is
elastic strain (elongation) or the ratio of the increase in length, Dl to the unstretched length, l0.

The maximum displacement of the vibrating particles of the medium is the amplitude of the wave

motion. It is determined by the energy of the wave. In practical system, wave energy is dissipated and the

wave amplitude gradually diminishes. The reduction in amplitude of a wave due to the dissipation of wave
energy as it travels away from the source is called damping.

3.2. Rheological–dynamical analogy

However, from a new rheological model input parameters listed, only EH is relatively easy to measure

experimentally. To apply the model to real materials, we need to relate the remaining parameters to

physically an alternative means by virtue of their mathematical descriptions. We shall now consider the

problem in which the applied forces vary with time so that dynamic stresses are setup in the body.
A mechanical disturbance (strain) propagates in an elastic medium at the finite velocity c. Therefore,

strains, initiated by the wave source at the instant t0 of time, reach an arbitrary point M of the bar at the

instant t > t0. The greater the path l the wave travels from its source to point M , for the greater the dif-

ference t � t0 ¼ l=c. Consequently, the vibration at point M lags in phase behind that at the source of the

waves. If l0 is the distance between two ends of the bar the difference t � t0 is

TD
K ¼ t � t0 ¼

l0
c
: ð8Þ

Under tension and compression of the bar, the frequency of natural vibrations is

x ¼
ffiffiffiffi
k
m

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EHA
l0

1

qAl0

s
¼

ffiffiffiffiffiffi
EH

q

s
1

l0
¼ c

l0
¼ 1

TD
K

: ð9Þ
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Initial strain rate, according to the proposed rheological model is

_ee ¼ _eeve þ _eevp ¼ r0=kK þ ðr � r0Þ=kN; ð10Þ

while from diagram in Fig. 1a is

_eeve þ _eevp ¼ ½r0=EK þ ðr0 � rYÞ=H 0�=T �: ð11Þ
Comparing above equations, we obtain

r0=kK þ ðr0 � rYÞ=kN ¼ ½r0=EK þ ðr0 � rYÞ=H 0�=T �; ð12Þ
so that

kN ¼ ðr0 � rYÞ=f½r0=EK þ ðr0 � rYÞ=H 0�=T � � r0=kKg: ð13Þ
The strain rates r0=ðEKT �Þ and r0=kK are very small values in comparison with the rate in the viscoplastic

yielding ðr0 � rYÞ=ðH 0T �Þ. Therefore, they can be neglected without an influence on the result. Because of
that, the coefficient of viscosity can be taken as

kN ¼ H 0T �: ð14Þ
According to the Kelvin�s body there is

kK ¼ EKTK; ð15Þ
where TK represents the time of retardation.

Heaving in mind Eq. (3), we can formulate expression similar to formula (9), turning the model into the

case of critical damping, EK=kK ¼ H 0=kN (Mila�ssinovi�cc, 2000)ffiffiffiffiffiffiffiffiffiffiffi
EKH 0

kKkN

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
1

TKT �

s
¼ 1

TD
K

; ð16Þ

where TD
K represents the dynamical time of retardation.

According to formulas (9) and (16) we shall have:ffiffiffiffiffiffi
EH

q

s
1

l0
¼

ffiffiffiffiffiffiffiffiffiffiffi
EKH 0

kKkN

r
) kKkN ¼ EKH 0cl20

EHg
) kKkN

c
¼ EKH 0Al20q

EHcA
¼ EKH 0

ck
m; ð17Þ

where

m ¼ kKkN

c
; k ¼ EKH 0

c
: ð18Þ

Critical damping is

c ¼ cc ¼ 2
ffiffiffiffiffiffi
km

p
¼ 2

EKkN

c
: ð19Þ

By these assumptions, we turned one very complicate nonlinear viscoelasto-plastic problem into a simpler linear

dynamical one.

Replacing kKkN by mc, EKkN þ H 0kK by cc and EKH 0 by kc, the differential equation (3) becomes

€eeðtÞmþ _eeðtÞcþ eðtÞk ¼ 0; ð20Þ
where

m ¼ kKkN

c
; c ¼ ðEKkN þ H 0kKÞ

c
; k ¼ EKH 0

c
: ð21Þ
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Analogy between differential equation (20) and differential equation of damped free vibration of single-

degree-of-freedom (SDOF) system becomes obvious. Coefficients are dimensionally equal in these equa-

tions. Therefore, a very important new mathematical–physical analogy between the new rheological model
and the dynamical model with viscous damping, Fig. 2, can be formulated. In accordance with this it is

obvious that inelastic response of engineering structures is essentially a dynamical problem. The rheology is

a branch of physics, which is closest to mechanics. The analogy exists for a very specific rheological model,

and is one example of numerous analogies that can be observed in mechanics, as well as between me-

chanical and electrical (thermal, magnetic, etc.) systems, by virtue of their mathematical descriptions.

4. Cyclic stresses

4.1. Coefficient of asymmetry of cycle

From among the various types of steady variable stresses, cyclic stresses are the most important; besides,

these stresses are the most widely investigated. The curves, which describe the variation of stresses in time,

may considerably differ in appearance; variation of stresses in machine parts often follows the sinusoidal

law

rðtÞ ¼ r0 þ rA sinðxrtÞ; ð22Þ
where xr ¼ load or stress frequency.

The maximum absolute stress in the cycle is denoted by rmax, while the minimum is denoted by rmin. The

ratio of minimum stress to maximum with the signs taken into account is known as the cycle characteristic,

or the coefficient of asymmetry of cycle

r ¼ rmin

rmax

: ð23Þ

The coefficient varies between �1 and þ1. The half of the sum of maximum and minimum stresses of a cycle
(taking into consideration their signs) is known as the constant component of cycle, or mean cycle stress.

Fig. 2. Analogy between a new rheological model and dynamical model with viscous damping.
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r0 ¼
rmax þ rmin

2
¼ 1þ r

2
rmax: ð24Þ

The half of the difference of maximum and minimum stresses (also taking into consideration their signs) is

known as the variable component of cycle or the amplitude of stresses in the cycle

rA ¼ rmax � rmin

2
¼ 1� r

2
rmax: ð25Þ

4.2. Dynamic coefficient using RDA

The RDA equation due to sinusoidal stresses takes the form of:

€eeðtÞmþ _eeðtÞcþ eðtÞk ¼ rA

k
EH

�
þ EK þ H 0

c
� x2

r

m
EH

�
sinðxrtÞ þ rA

c
EH

�
þ kK þ kN

c

�
xr cosðxrtÞ

þ r0

k
EH

�
þ EK þ H 0

c

�
� rY

EK

c
: ð26Þ

The solution for this second order differential equation with constant coefficients is

eðtÞ ¼ eh þ ep; ð27Þ
where eh is the complementary solution and ep is the particular solution for the given equation:

ep ¼ A sinðxrtÞ þ B cosðxrtÞ þ C; ð28Þ
where A, B and C are constants:

A ¼ Prðk � mx2
rÞ þ Qrcxr

ðk � mx2
rÞ

2 þ ðcxrÞ2
; B ¼ Qrðk � mx2

rÞ � Prcxr

ðk � mx2
rÞ

2 þ ðcxrÞ2
; C ¼ r0

1

EH

�
þ 1

EK

þ 1

H 0

�
� rY

1

H 0 ; ð29Þ

and

Pr ¼ rA

k
EH

�
þ EK þ H 0

c

�
� rAx2

r

m
EH

; Qr ¼ rA

c
EH

�
þ kK þ kN

c

�
xr: ð30Þ

Strain under constant stress, taking into consideration delayed elastic or viscoelastic strain is

e0ðtÞ ¼ eh þ C ¼ ec ¼ r0

EH

þ r0

EK

1
�

� e�ðt=TKÞ
�
¼ r0

EHðt0Þ
ð1þ uÞ; ð31Þ

where creep coefficient is

uðtÞ ¼ eve
eel

¼ EHðt0Þ
EK

1
�

� e�ðt=TKÞ
�
: ð32Þ

Cyclic strain is given by

e00pðtÞ ¼ A sinðxrtÞ þ B cosðxrtÞ; ð33Þ

or

e00pðtÞ ¼ eA sinðxrt � aÞ; ð34Þ

where cyclic strain amplitude and phase difference by which the strain lags behind the stress are:

eA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P 2
r þ Q2

r

ðk � mx2
rÞ

2 þ ðcxrÞ2

s
; tan a ¼ Prcxr � Qrðk � mx2

rÞ
Prðk � mx2

rÞ þ Qrcxr
: ð35Þ
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When the structural member is loaded cyclically, the rheological behavior of the member must be char-

acterized by the dynamic time of retardation TD
K . Now, taking into account formula (32) we have RDA

viscoelastic modulus

ED
Kðt; t0Þ ¼

EHðt0Þ
uðtÞ 1

�
� e�ðt=TD

K
Þ
	
¼ EHðt0Þ

uðtÞ ; ð36Þ

where

e�ðt=TD
K
Þ � 0: ð37Þ

Taking into consideration formula (36), we find the following expression for cyclic strain amplitude and
phase or loss angle

eA ¼ rA

EHðt0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ uÞ2 þ d2

1þ d2

s
; tan a ¼ du

1þ d2 þ u
; ð38Þ

where ratio of load or stress frequency to the frequency of natural vibrations is

d ¼ xr

x
¼ xrTD

K : ð39Þ

Dynamic mechanical properties indicate the ability of a material to dissipate energy. Owing to their visco-

elastic nature, dynamic mechanical properties measure the in-phase and out-of-phase modules with an ap-

plied oscillatory stress function. More importantly, tan a the damping factor (measure of the phase angle

between the applied stress and subsequent strain) is also obtained. This allows a qualitative estimation of the

ability to dissipate energy.

The maximum phase angle is measure of the maximum energy dissipation

max tan a
d¼

ffiffiffiffiffiffiffi
1þu

p ¼ u

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ u

p : ð40Þ

The variation of phase angle with d (D for the ratio d) is shown in Fig. 3. At very high frequencies the

behavior is stiff and elastic; the stress and strain are in phase. Lower frequencies allow some viscous flow,

and the strain lags the stress. At still-lower frequencies, the stress and strain are again in phase.

Fig. 3. Frequency dependence of phase angle.
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The ratio g of cyclic strain amplitude eA to strain ec is the RDA dynamical coefficient,

g ¼ eA
ec

¼ rA

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ uÞ2 þ d2

1þ d2

s
1

1þ u
: ð41Þ

This form of the formula shows that dynamic stresses may be expressed through constant stresses by

multiplying the later with the RDA dynamic coefficient

rA ¼ gr0: ð42Þ
At d ! 0 (static loading) or u ! 0 (state of elasticity), we have the special case

g ¼ rA

r0

: ð43Þ

At d ! 1 or d ! 100, the diagram representing the RDA dynamical coefficient becomes a horizontal line,

as illustrated in Fig. 4, and

lim
d!1

g ¼ rA

r0

1

1þ u
: ð44Þ

5. Fatigue limit using RDA

5.1. Fatigue limit under constant stress amplitude

The ratio r is a key to understanding the loading mode for determination the fatigue limit in an

asymmetrical cycle, which involves combination of tensile and compressive stresses, for example r ¼ �1

represents reversed loading or symmetrical cycle. Other than quasi-static tensile and compressive stresses,

where r is equal to one, the r ratio identifies the fatigue limit-loading mode in the range )1 and þ1. In

accordance with RDA the fatigue limit under constant stress amplitude may be obtained as follows:

re ¼ r0 þ rA ¼ r0 þ gr0 ¼ r0 þ rA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ uÞ2 þ d2

1þ d2

s
1

1þ u
: ð45Þ

Fig. 4. RDA dynamic coefficient versus ratio d.
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Taking into account formulas (24) and (25) we have

reðrÞ ¼
1

2
rmax 1

2
4 þ r þ ð1� rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ uÞ2 þ d2

1þ d2

s
1

1þ u

3
5: ð46Þ

The results of formula (46) may be plotted on diagrams in which values of stress are plotted as ordinates

and values of d are plotted as abscissas. Such diagrams may be called S–D diagrams (S for stress, D for the

ratio d) and drawn using semi logarithmic plotting as shown in Fig. 5.

S–D diagrams become horizontal when d ! 1 or d ! 100, for values of, u ranging from 0.5 to 6, thus

indicating a well-defined RDA fatigue limit as shown in Table 1. From formula (46) follows:

lim
d!1

reð1Þ ¼ rmax; lim
d!1

reð0Þ ¼
1

2
1

�
þ 1

1þ u

�
rmax; lim

d!1
reð�1Þ ¼ 1

1þ u
rmax: ð47Þ

The proposed S–N curves are based on extensive theoretical studies using a newly proposed rheological

model and RDA. Unlike previously available and purely empirical S–N curves, the newly developed S–N curves

Fig. 5. RDA fatigue limit curves (S– logD curves) for creep coefficient¼ 1.

Table 1

Numerical values depicting the variation of fatigue limit as a function of d for various values of the creep coefficient uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þuÞ2þd2

1þu

q
1

1þu

u d 1=ð1þ uÞ
1 10 100

0.5 0.849837 0.670779 0.666708 0.666667

1 0.790569 0.507371 0.500075 0.5

2 0.745356 0.346283 0.333467 0.333333

3 0.728869 0.267922 0.250187 0.25

4 0.72111 0.222497 0.20024 0.2

5 0.71686 0.1934 0.166958 0.166667

6 0.714286 0.173514 0.1432 0.142857
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take into account the mechanical aspects of fatigue and cater for the influence of creep (creep coefficient) of

material on the fatigue limit.

5.2. General variation of strength with range of stress

The test results for determining fatigue limit under different cycles are conveniently represented in the

form of diagrams.

The simplest among these diagrams is the diagram in the r0 and rA coordinates (Haigh type of diagram)
shown in Fig. 6. On this diagram the values of r0 are laid off on the x-axis to a certain scale and the values of

rA are laid off on the y-axis in the same scale. Curves may be plotted on the basis of the formulas (47) as

RDA fatigue limits under different cycles of variable stresses and for different values of creep coefficient.

Fig. 7 shows the Smith type of diagram in which the line representing constant (mean) stresses is drawn

as a straight line at an angle of 45% with the horizontal axis. This makes the minimum stress line curve and

permits the horizontal axis to represent the constant stresses to the same scale as on the vertical axis.

Fig. 6. Haigh type of diagram of RDA fatigue limits for different values of creep coefficients.

Fig. 7. Smith type of diagram of RDA fatigue limits for different values of creep coefficients.
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6. Parameters of a new rheological model

Generally, the stress–strain curve is linear elastic until r6 rp (see Fig. 8) and nonlinear with considerable

viscoelasto-plastic strain, under compression stress r P rp. Critical stresses and proportional stress are
defined by Euler�s expression

rcr ¼
EHp2

l0
kz

� 	2 ) rp ¼
EHp2

l0
kz

� 	2
p

: ð48Þ

If we now turn to the consideration the dynamical time of retardation TD
K , we shall have the dynamic visco-

elastic modulus ED
K (see formula (36))

ED
K ¼ EH

u� ; ð49Þ

where u� is structural creep coefficient.
Using the RDA modeling technique the proportional stress now may be expressed as follows

rRDA
p ¼ H 0DEH

1

R
; ð50Þ

where H 0D is the dynamic viscoplastic modulus, and R ¼ const is the RDA dimensional parameter.

Comparing the two expressions for rp, we get

R ¼
l0
kz

� 	2
p

p2
H 0D: ð51Þ

On the other hand, k ¼ EHA=l0 and k ¼ ED
K H 0D=c. Therefore

H 0D ¼ u� Ac
l0

: ð52Þ

Let us determine the structural creep coefficient u� on the thin long reinforced steel bar with circular cross-

sectional area A and length l0 ¼ lp ¼ kPkz, where kz is the radius of gyration and kP � 100. Choice of

Fig. 8. Stress–strain curve.
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slenderness ratio, kP � 100 can be explained by the fact that elastic (Euler�s) theory is not valid for slen-

derness ratio under the 100. It is confirmed by numerous experimentally obtained results on steel.

During a small time interval Dt the total strain energy density will move so that the fictitious interface A1

will have moved a short distance Dl1. In the same time the fictitious interface A2 will have moved a greater

distance Dl2 such that A1Dl1 ¼ A2Dl2 ¼ V , the fictitious volume. The energy went all the way through the

fictitious volume without the physical transfer of material from the source by any cross-section of the bar in

time Dt. Therefore (see Fig. 9),

A1v1 ¼ A2v2; ð53Þ

where from

A2 ¼ A1

v1
v2
: ð54Þ

The reduced area A2 can now be found by applying Bernoulli�s energy theorem

r1 þ
1

2
qv21 ¼ r2 þ

1

2
qv22 ¼ r2 þ

1

2
q

A1

A2

� �2

v21; ð55Þ

where r1 ¼ rp is the static energy density, and 1=2ðqv21Þ is the kinetic energy density.

By putting v1 ¼ c (see formula (6)), in formula (55) we find that

A2 ¼
A1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðr1�r2Þ
EH

þ 1
q : ð56Þ

Here r2 is the RDA fatigue limit in symmetrical cycle (see formula (47)),

r2 ¼ reð�1Þ ¼ rp

1þ u� : ð57Þ

Thus we get the following formula for the reduced area A2

A2 ¼
A1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�rp
EH

u�

1þu�

� 	
þ 1

r : ð58Þ

If the bar is subjected to tensile or compressive stress in a given direction, not only strain in that direction

(axial strain) takes place but also strains in directions perpendicular thereto (lateral strain). Within the

range of elastic action the ratio of lateral to axial strain under conditions of uniaxial loading is called

Poisson�s ratio.
Experiments show that under tension (Fig. 9) the length of bar increases by Dl, whereas its width de-

creases by 2a ¼ U1 � U2. The axial strain can be found by applying Hooke�s law

Fig. 9. Steady transfer of energy through a long bar having a section with reduced diameter.
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el ¼
rp

EH

; ð59Þ

and the lateral strain is

et ¼ lel; ð60Þ

where l is Poisson�s ratio.
On the other hand the lateral strain is

et ¼
/1 � /2

/1

: ð61Þ

Therefore,

l ¼ /1 � /2

/1

EH

rp

: ð62Þ

Diameter U2 of the bar is

/2 ¼
/1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2rp
EH

u�

1þu�

� 	
þ 1

4

r : ð63Þ

Therefore, Poisson�s ratio may be expressed by the formula

l ¼ 1

2
664 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2rp
EH

u�

1þu�

� 	
þ 1

4

r
3
775EH

rp

: ð64Þ

For most structural materials, Poisson�s ratio has values that lie between one-third and one-sixth; hence,

with ordinary measuring devices, the precision of lateral-strain measurements is not as high as that of

corresponding axial-strain measurements.

The influence of rp and EH on the result of l are very small as compared to u�. Then we may consider the

theoretical value of Poisson�s ratio (l ¼ 0:25) as the limit of formula (64), when u� ! 1,

lim l
u�!1

¼

EH

0
B@1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ rp
EH

� 	
4

r 1
CA

rp

� 0:25: ð65Þ

Knowing the value of l, we can calculate the change in the volume of the bar under tension or compression.

If Poisson�s ratio l ¼ 0:5, there is no change in the volume due to deformation. At u� ! 1, then it will be

lim l
u�!1

¼

EH

0
B@1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2rp
EH

� 	
4

r 1
CA

rp

� 0:5: ð66Þ

However, since l < 0:5 for a majority of the materials at small strains (e � 1), tension is accompanied by

an increase and compression by a decrease in the volume.
The value of extension e was defined above as Dl=l0, but it is not immaterial what the value of Dl is. If Dl

is small, then it will be natural to refer it to l0. But if Dl is not small, then at large extension ratios it will be
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more logical to refer an infinitesimal change of the length dl to the current value of the length l. This means

that an infinitesimal extension deH determined in this way is given by

deH ¼ dl
l
: ð67Þ

Then, proceeding from the natural initial condition of the absence of deformation at l ¼ l0, we obtain the
following expression for eH

eH ¼
Z l

l0

dl
l
¼ ln

l
l0

¼ ln
l0 þ Dl

l0
¼ lnð1þ eÞ: ð68Þ

The quantity eH as a measure of strain was first introduced by Roentgen; in the modern rheological lite-

rature it is called Hencky�s measure of extension.
We now return to the concept of Poisson�s ratio which we shall define as the ratio of lateral to axial

strains. When an incompressible body is extended, in which case no change in volume occurs,

lH ¼ 0:5: ð69Þ

We have discussed above some measures of small and large strains. This discussion shows that we may use

EH and l as constants and obtain the following expression for the u� as a new constant or characteristic of

the strained state

u� ¼

1

1�lrp
EH

� �4

� 1

" #
EH

2rp

1� 1

1�lrp
EH

� �4

� 1

" #
EH

2rp

: ð70Þ

The general approach to the analysis of the problem of the effect of Poisson�s ratio on structural creep
coefficient developing must also be based on formula (70). The form of the function u�ðlÞ, assuming that

the ep ¼ rp=EH ¼ 0:001 is shown in Fig. 10. Assuming l equal to 1/3 for steel, we obtain u� � 2.

Results of a new rheological model parameters obtained here identify an important relationship u�ðlÞ in the

rheology, which have not been considered before.

Fig. 10. Dependence of creep coefficient on the Poisson�s ratio.
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7. Hysteretic energy dissipation

7.1. The rate of release of viscoelastic energy

The phenomenon of hysteresis, which occurs in various branches of physics, (the lagging of the mag-

netization behind the magnetizing force is known as hysteresis) has been a long-standing topic of research

interest (Lubarda et al., 1992). This paper focuses on the application of the new rheological model to the

description of the hysteretic response of materials subjected to cyclic stress. When model is stretched, the

elastic potential energy is stored in the material, as shown in Fig. 11.

The work required to stretch or compress a model does not depend on the weight of the model. Con-

sequently, gravity is not involved in the measurement of elastic potential energy. Instead, the work required

for the stretching or compressing is dependent upon the elasticity of the model, EH,

U1 ¼
r2
max

2EH

Al0; ð71Þ

where A ¼ A1 (see Fig. 9).

Consider a elliptical loop of the rheological dynamical model shown in Fig. 11, where

r00ðtÞ ¼ c _ee00pðtÞ ¼ cxreA cosðxrt � aÞ: ð72Þ

For a cyclic stress variation along the entire loop, the rate of release of viscoelastic energy is equal to the

area enclosed by the loop, i.e.

Wd;ve ¼ pcxre
2
A

J
M2

� �
: ð73Þ

If TD
K ¼ 1=x then the damping c (see formula (19)) is given by

c ¼ 2kTD
K ¼ cc: ð74Þ

Fig. 11. Elastic potential energy and hysteretic loop dissipation in terms of stress–strain diagram.
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Thus the rate of release of viscoelastic energy is given by

Wd;veðrÞ ¼ pk
1

E2
H

ð1� rÞ2

2
r2
max

ð1þ u�Þ2 þ d2

1þ d2
d: ð75Þ

If the area of transfer of energy is cross sectional area A, then the energy dissipation is given by

Ud ¼ AWd;ve: ð76Þ
In the special case, at u� ! 0, we have elastic behavior and the rate of release of elastic energy from formula
(75) as follows

Wd;elðrÞ ¼ pk
1

E2
H

ð1� rÞ2

2
r2
maxd: ð77Þ

As a result the first law of thermodynamics: when heat is converted to another form of energy, or when

other forms of energy are converted to heat, there is no loss of energy, we have

U2 � U1 ¼ Q� W ; ð78Þ
where U2 � U1 is change in internal energy, Q is heat energy, and W is potential energy of the external loads.

A process in which no heat is added to or removed from a substance is called an adiabatic process. In

such a case: Q ¼ 0 and U2 ¼ �W þ U1. When the cyclic loading in an ideal elastic well-isolated system

permits no heat to enter or leave during the process, the work done on the system equals the change in the

internal energy.

7.2. Fatigue life prediction

It can easily be shown that the total potential energy of the system, P ¼ U2 ¼ U1 � W decreases as a

temperature of the system rise. When all elastic potential energy is converted through hysteretic loop

dissipation, we have

Ud ¼ U1; ð79Þ
and relative frequency de for theoretical estimation of the fatigue life is

ð1þ u�Þ2 þ d2
eðrÞ

1þ d2
eðrÞ

deðrÞ ¼ U1

2E2
H

Apkð1� rÞ2r2
max

¼ l0EH

pkð1� rÞ2
: ð80Þ

Number of cycles for fatigue life is

NeðrÞ ¼
deðrÞ
d1

; ð81Þ

where d1 ¼ 2pTD
K =tp is the relative frequency for the first cycle, and tp is time (s) when stress rp has been

achieved.

7.3. Change in the temperature of the body

High cycle frequencies during the cycling process cause significant temperature rise in the isolated body

and thermal expansion work, WT as follows

WT ¼ EHðaTDT Þ2

2
Al0; ð82Þ

where aT is a coefficient of linear thermal expansion, and DT [�C] is the difference between the final tem-

perature and the original temperature of the specimen.
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As mentioned above, elastic potential energy has to be converted into the thermal expansion work

Ud ¼ WT: ð83Þ
Difference between the final temperature and the original temperature is given by

DTve ¼
1

aT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

deðrÞ
ð1þ u�Þ2 þ d2

1þ d2
d

s
rmax

EH

: ð84Þ

In the special cases at u� ! 0 (state of elasticity), we have

DTel ¼
1

aT

ffiffiffiffiffiffiffiffiffiffi
d

deðrÞ

s
rmax

EH

; ð85Þ

where d ¼ d1N (N is the number of cycles).

7.4. Fatigue failure life prediction

We define the total mechanical energy as

UT ¼ �W þ Ue þ Us ¼ P þ Us; ð86Þ
where Us ¼ 2csAs is the necessary energy to produce a unit area of fracture surface, cs is the specific surface
energy, and As is the fracture or crack area.

For the Griffith equilibrium state, the rate of release of potential energy is given by

GI ¼ Gcr ¼ 2cs: ð87Þ
The relative frequency for the fatigue failure life can be most simply explained by the RDA model, which

assumes that the all energy for any fixed crack area is converted through hysteretic loop dissipation

Ud ¼ UT ¼ �W þ Ue þ Us ¼ P þ Us )
ð1þ u�Þ2 þ d2

cðrÞ
1þ d2

cðrÞ
dcðrÞ ¼ ðP þ UsÞ

2E2
H

Aspkð1� rÞ2r2
max

: ð88Þ

Let us now write down the expression for dc in the case of axial loading and As ¼ A

ð1þ u�Þ2 þ d2
cðrÞ

1þ d2
cðrÞ

dcðrÞ ¼

0
@� 1þ GI

r2max

2EH
l0

1
AdeðrÞ: ð89Þ

8. Fatigue failure

8.1. The localized reduction of cross-sectional area

Let us calculate the localized reduction of cross-sectional area in center of specimen, (Fig. 9) taking into

account the creep of steel. Initial strain rate takes into consideration delayed elastic is r1=kK or

_ee1 ¼ v
u�

l0
¼ r1ffiffiffiffiffiffiffiffiffi

EHq
p u�

l0
; ð90Þ

where v1 ¼ v is the velocity of the particles (see formula (7)).

In this case we can directly apply Bernoulli�s energy theorem

r1 þ
1

2
qA�l0 _ee21

1

l0
¼ r2 þ

1

2
qA�l0 _ee22

1

l0
¼ r2 þ

1

2
qA� A1

Ared

� �2

_ee21; ð91Þ
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where A� ¼ 1 is a unit cross-sectional area, r1 ¼ rmax and r2 is the RDA fatigue limit in symmetrical cycle

(see formula (57)).

Therefore, the localized reduction of cross-sectional area in center of specimen and reduced diameter are:

Ared ¼
A1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EHl20
rmaxA�u�

1

1þ u� þ 1

s ;
/1

/red

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EHl20

rmaxA�u�
1

1þ u� þ 1
4

s
: ð92Þ

8.2. The RDA fracture stress

Let the fracture stress be denoted by rc and the cross-sectional area in the narrowest section by Ared, then

rc ¼
S2
Ared

¼ r2

A1

Ared

; ð93Þ

where S2 ¼ S1=ð1þ u�Þ and S1 ¼ r1A1. Further yields

rc ¼
rmax

ð1þ u�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EHl20

rmaxA�u�
1

1þ u� þ 1

s
; ð94Þ

where rmax is maximum absolute stress in the cycle.

8.3. The maximum applied dynamical stress

Considering the relationship between rc and rmax earlier obtained from condition of fracture, we can

now obtain the maximum applied dynamical stress in symmetrical cycle (r ¼ �1), which results from the

fact that we provide the total fatigue failure life of the bar under axial loading.

rmax;c ¼
EHl20

A�u�ð1þ u�Þ

2
4� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

cA
�2u�2ð1þ u�Þ4

E2
Hl

4
0

s 3
5: ð95Þ

In the above formula, rc is the ultimate or fracture strength under quasi-static loading.

8.4. The RDA rate of release of potential energy

Fracture by the progressive growth of incipient flaws under cyclically varying loads may be formulated
by follow condition

dcð�1Þ
deð�1Þ ¼

/1

/red

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EHl20

rmax;cA�u�
1

1þ u� þ 1
4

s
: ð96Þ

It is based on the assumption that in period from the fatigue life to the fatigue failure life the reduction of the

cross-section area goes on.

Then, according to above assumption, the RDA rate of release of potential energy will be (see (89))

GI;c ¼
/1

/red

�
þ 1

�
r2
max;cl0
2EH

; GI;c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EHl20

rmax;cA�u�
1

1þ u� þ 1
4

s 
þ 1

!
r2
max;cl0
2EH

; ð97Þ

where from the RDA stress intensity factor yields

KI;c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GI;cEH

p
: ð98Þ
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9. Comparison of experimental and computational results

9.1. Experimental data

Axial fatigue experiment was performed. Temperature data on reinforcing steel bar, U ¼ 19 mm are used

for their comparison with the RDA results. For a more exact elucidation of the RDA, difference between

the final temperature and the original temperature on reinforcing steel bar was investigated, DT [�C]. The
specimen is loaded at the original temperature of 19 �C, with cyclic sinusoidal load in a symmetrical cycle:

r0 ¼ 0, rmax ¼ 141 MPa, and frequency, f ¼ fr ¼ 20 Hz. The specimen on which, the work was done was

an isolated reinforced steel bar to reduce the transfer of heat to a minimum. Temperatures of the specimen

under unchanged conditions at ambient temperature are measured after: 104 (8.33 min), 105 (1.388 h),

2� 105 (2.77 h), 3� 105 (4.166 h), 4� 105 (5.55 h) and 5� 105 (6.944 h) cycles and shown in Table 2 and
Fig. 12.

Table 2

The variations RDA results with number of cycles and test data of temperatures on isolated reinforced steel bar

Number of

cycles N
Relative

frequency d
reð�1Þ
(MPa)

DTel (�C) DTve (�C) a (rad) Wd;ve (J/m
2) Wd;el (J/m

2) DT (�C) test
data

1 0.000000889 141 0.0060462 0.0181385 5.9267E–07 0.002698789 0.000299865

10 0.00000889 141 0.0191197 0.057359 5.9267E–06 0.02698789 0.002998654

100 0.0000889 141 0.0604617 0.1813851 5.9267E–05 0.269878897 0.029986544

1000 0.000889 140.99995 0.1911967 0.5735889 0.00059267 2.69878709 0.299865443

10 000 0.00889 140.99505 0.6046171 1.8137876 0.00592644 26.985998409 2.998654429 1.5

100 000 0.0889 140.50776 1.9119671 5.7158768 0.05904224 267.9978453 29.98654429 5.2

200 000 0.1778 139.06638 2.7039298 8.0005474 0.11676375 525.0552298 59.97308857 6.7

300 000 0.2667 136.7753 3.3116242 9.6371995 0.71796661 761.8461533 89.95963286 7.2

400 000 0.3556 136.78044 3.8239343 10.884417 0.22367212 971.7977983 119.9461771 8

500 000 0.4445 130.25138 4.2752885 11.848133 0.27117424 1151.503824 149.9327214 8.2

600 000 0.5334 126.35947 4.6833439 12.591167 0.31404806 1300.461648 179.9192657

700 000 0.6223 122.26122 5.0585895 13.158921 0.35212271 1420.385288 209.90581

800 000 0.7112 118.08858 5.4078597 13.587371 0.38543369 1514.385581 239.8923543

900 000 0.8001 113.94542 5.7359014 13.905951 0.4141684 1586.232898 269.8788986

1 000 000 0.889 109.9084 6.0461709 14.138829 0.43861491 1639.805902 299.8654429

1948313.62 1.732050807 81.406388 8.4393666 14.617412 0.52359878 1752.695779 584.2319262

2 000 000 1.778 80.347782 8.5505769 14.617445 0.52345038 1752.703643 599.7308857

3 000 000 2.667 66.236412 10.472275 14.758424 0.48536234 1786.674979 899.5963286

4 000 000 3.556 59.195553 12.092342 15.230061 0.42665793 1902.693617 1199.461771

5 000 000 4.445 55.32028 13.519649 15.912995 0.37240403 2077.157606 1499.327214

6 000 000 5.334 53.000342 14.810034 16.700784 0.32701074 2287.91187 1799.192657

7 000 000 6.223 51.515534 15.996665 17.533547 0.28987916 2521.768148 2099.0581

8 000 000 7.112 50.513462 17.101154 18.379542 0.25948437 2770.989963 2398.923543

9 000 000 8.001 49.80773 18.138513 19.222088 0.23438997 3030.865883 2698.788986

10 000 000 8.89 49.293117 19.119671 20.052515 0.21344291 3298.399599 2998.654429

20 000 000 17.78 47.589128 27.039298 27.378226 0.11097073 6148.599221 5997.308857

30 000 000 26.67 47.263201 33.116242 33.301694 0.07453732 9097.000528 8995.963286

40 000 000 35.56 47.148322 38.239343 38.360018 0.05605108 12070.44222 11994.61771

50 000 000 44.45 47.095007 42.752885 42.839306 0.04489597 15053.94901 14993.27214

60 000 000 53.34 47.066008 46.833439 46.899212 0.03743832 180402.49844 17991.92657

70 000 000 62.23 47.048509 50.585895 50.638105 0.03210293 21033.93236 20990.581

78 928 009 70.167 47.038162 53.715051 53.758665 0.02847837 23706.23212 23667.78237

80 000 000 71.12 47.037146 54.078597 54.121338 0.02809742 24027.17016 23989.23543

90 000 000 80.01 47.029354 57.359014 57.394837 0.02497997 27021.61102 26987.88986

100 000 000 88.9 47.023779 60.461709 60.492299 0.02248486 30016.89423 29986.54429
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9.2. RDA fatigue results

Material isotropic: elastic modulus, EH ¼ 2:1� 105 MPa; Poisson�s ratio, l ¼ 1=3; specific gravity, c ¼
7:86� 10�3 kg/cm3; coefficient of linear thermal expansion, aT ¼ 125� 10�7 �C�1.

Isolated reinforced steel bar (l0 ¼ 50 cm, U ¼ 1:9 cm):

Iz ¼
/4p
64

; A ¼ /2p
4

; kz ¼
ffiffiffiffi
Iz
A

r
¼ /

4
;

l0
kz

¼ l0
/
4

¼ 4� 50

1:9
¼ 105:26:

Proportional stress:

rE
p ¼ EHp2

l0
kz

� 	2
p

¼ 2:1� 105 � p2

105:262
¼ 187:06 MPa > 141 MPa:

Structural creep coefficient:

u� ¼

1

1�lrp
EH

� �4

� 1

" #
EH

2rp

1� 1

1�lrp
EH

� �4

� 1

" #
EH

2rp

; u� ¼
1

1�0:333�187:06
210 000

� 	4
� 1

� �
210 000
2�187:06

1� 1
1�0:333�187:06

210 000

� 	4
� 1

� �
210 000
2�187:06

¼ 2:

RDA viscoelastic modulus:

ED
K ¼ EH

u� ; ED
K ¼ 2:1� 105

2
¼ 1:05� 105 MPa:

RDA viscoplastic modulus:

H 0D ¼ u� Ac
l0

; H 0D ¼ 2
1:92 � p � 7:86� 10�3

4� 50
¼ 0:000891 kg=cm2:

RDA dimensional parameter:

R ¼
l0
kz

� 	2
p

p2
H 0D; R ¼ 105:262

p2
0:000891 ¼ 1 kg=cm2:

Fig. 12. Computational RDA results of temperatures on testing bar and test data <5� 105 cycles.

D.D. Mila�ssinovi�cc / International Journal of Solids and Structures 40 (2003) 181–217 205



Dynamic time of retardation:

TD
K ¼

ffiffiffiffiffiffi
q
EH

r
l0 ¼ 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7860

2:1� 105 � 106

r
¼ 0:0000967 s:

Original loading time:

Let us choose, t ¼ tp (tp is time when proportional stress rp has been achieved) from creep data (Koji�cc,
1997):

ec ¼ a0ra1
p t

a2
p ; a0 ¼ 2:0� 10�9; a1 ¼ 3:0; a2 ¼ 1:2; tp ½h�; EH½MPa�;

tp ¼ 60

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u�

2� 10�9 � r2
p � EH

1:2

s !
¼ 60

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2� 10�9 � 1872 � 2:1� 105
1::2

r !
¼ 11:38 min ¼ 683 s:

Relative frequency or ratio d:

d ¼ xr

x
¼ 2pfTD

K ¼ 0:000607584f ¼ 0:000607584
N
tp

¼ 0:000000889N :

Fatigue limit in a symmetrical cycle:

reð�1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ uÞ2 þ d2

1þ d2

s
1

1þ u
rA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ d2

1þ d2

s
1

3
141;

lim
d!1

reð�1Þ ¼ 1

1þ u
rA ¼ 1

3
141 ¼ 47 MPa:

Relative frequency for theoretical estimation of the fatigue life, r ¼ �1:

deð�1Þ ¼ l0EH

pkð1� rÞ2
¼ l0

/p

� �2

¼ 50

1:9� p

� �2

¼ 70:167:

Number of cycles for the fatigue life:

Neð�1Þ ¼ deð�1Þ
d1

¼ 70:167

0:000000889
¼ 78928009c:

Fatigue life:

teð�1Þ ¼ Neð�1Þ
fr

¼ 78928009

20
¼ 3946400:45 s ¼ 45:6759 days:

Change of temperature of the bar:

DTel ¼
1

aT

ffiffiffiffiffiffiffiffiffiffi
d

deðrÞ

s
rmax

EH

¼ 1

125� 10�7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d

70:167

r
141

2:1� 105
;

DTve ¼
1

aT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

deðrÞ
ð1þ uÞ2 þ d2

1þ d2
d

s
rmax

EH

¼ 1

125� 10�7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d

70:167

9þ d2

1þ d2

s
141

2:1� 105
:

Phase angle:

tan a ¼ du

1þ d2 þ u
¼ 2d

3þ d2
; max tan a

d¼
ffiffiffiffiffiffiffi
1þu

p ¼ u

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ u

p ; max tan a ¼
d¼1:732

2

2
ffiffiffi
3

p ¼ 0:57735:
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The rate of release of viscoelastic energy:

Wd;veð�1Þ ¼ 2pk
1

E2
H

r2
max

ð1þ uÞ2 þ d2

1þ d2
d ¼ 2p

0:000283528

2:1� 105 � 0:5
1412

9þ d2

1þ d2
d � 106:

The rate of release of elastic energy:

Wd;elð�1Þ ¼ 2pk
1

E2
H

r2
maxd ¼ 2p

0:000283528

2:1� 105 � 0:5
1412d106:

Strength in tension: yield strength, rY ¼ 400 MPa; ultimate strength, rc ¼ 500 MPa.

Maximum applied dynamical stress:

rmax;c ¼
EHl20

A�u�ð1þ u�Þ

2
4� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

cA�2u�2ð1þ u�Þ4

E2
Hl

4
0

s 3
5;

rmax;c ¼
2:1� 105 � 0:52

1� 2� ð1þ 2Þ

"
� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 5002 � 1� 22 � ð1þ 2Þ4

ð2:1� 105Þ2 � 0:54

s #
¼ 127:64 MPa:

Reduced diameter:

/1

/red

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EHl20

rmax;cA�u�
1

1þ u� þ 1
4

s
;

/1

/red

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2:1� 105 � 0:52

127:64� 1� 2

1

1þ 2
þ 1

4

r
¼ 3:427:

RDA rate of release of potential energy:

GI;c ¼
/1

/red

�
þ 1

�
r2
max;cl0
2EH

; GI;c ¼ ð3:427þ 1Þ 127:64
2 � 0:5

2� 2:1� 105
¼ 0:08588 MJ=m2 ¼ 85:88 kJ=m2:

RDA stress intensity factor:

KI;c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GI;cEH

p
; KI;c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:08588� 2:1� 100000

p
¼ 134:294 MNm�3=2:

Relative frequency for theoretical estimation of the fatigue failure life:

dcð�1Þ ¼

0
@� 1þ GI;c

r2max;c

2EH
l0

1
Adeð�1Þ;

r2
max;c

2EH

l0 ¼
127:642

2� 2:1� 105
� 0:5 ¼ 0:019395201 MP=m

¼ 19:40 kJ=m2;

dcð�1Þ ¼
�
� 1þ 85:88

19:40

�
70:167 ¼ 3:427� 70:167 ¼ 240:45:

Number of cycles for the fatigue failure life:

Ncð�1Þ ¼ dcð�1Þ
d1

¼ 240:45

0:000000889
¼ 270470827c:

Fatigue failure life:

tcð�1Þ ¼ Ncð�1Þ
fr

¼ 270470827

20
¼ 13523541 s ¼ 156:52 days:
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9.3. Griffith’s theory of fracture results

For the classic Griffith�s crack, the stress intensity factor is given by

KI ¼ rc

ffiffiffiffiffiffi
pa

p
: ð99Þ

For other geometries the stress intensity factor can be written as

KI ¼ rN

ffiffiffiffiffiffi
pa

p
F ða=bÞ; ð100Þ

where rN is the nominal stress at the crack, and F is a geometric factor that depends upon the geometry of

the specimen and can be found in stress intensity handbooks such as Tada et al. (1973) and Rooke and

Cartwright (1976).

Consider a crack of the specimen shown in Fig. 16, where

F ða=bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b
pa

tan
pa
2b

� 	r
;

b ¼ 19 mm; /red ¼
/1

3:428
¼ 19

3:428
¼ 5:542 mm; a ¼ 19� 5:542

2
¼ 6:7287 mm;

F ða=bÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 19

p � 6:7287
tan

p � 6:7287

2� 19

� �s
¼ 1:05724;

ð101Þ

KI ¼ 500

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
6:7287

1000

r
1:05724 ¼ 76:8568 MNm�3=2;

GI ¼
K2

I

EH

¼ 76:85682

2:1� 105
¼ 0:028128 MJ=m2 ¼ 28:128 kJ=m2:

Because of the circular crack yields:

G�
I ¼ 28:128� p ¼ 88:368 kJ=m2;

K�
I ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
G�

IEH

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:088368� 2:1� 100000

p
¼ 136:225 MNm�3=2:

9.4. Discussion

Experimental data are shown for six different numbers of cycles. There is a very good compatibility

between the experimental data and the RDA results in the first three time periods (2.77 h), as shown in Fig. 12.

The RDA results are not well compatible with test data for the latter time periods (6.944 h). The reason for

that is a contact between heads of the testing machine and specimen, which could not be isolated to prevent

the flow of heat through a metal.
The phase angle between the applied stress and subsequent strain is shown in Fig. 13. The maximum

phase angle, d ¼ 1:732, N � 2� 106 is measure of the maximum difference between the rate of release of

viscoelastic energy and the rate of release of elastic energy (see Fig. 14). At very high frequencies, d � 20,

Nd � 2� 107 the stress and strain are in phase. Frequencies between d � 0:1, N � 2� 105 and �20,

N � 2� 107 allow some viscous flow, the strain lags the stress, and this is range when the fatigue appears

(see Fig. 15).

Relative frequency for the fatigue life is deð�1Þ ¼ 70:167, (Neð�1Þ ¼ 78928009c and teð�1Þ ¼ 45:676
days). This is a number of cycles when the elastic potential energy is converted through hysteretic loop
dissipation. Relative frequency for the fatigue failure life is dcð�1Þ ¼ 240:45, (Ncð�1Þ ¼ 270470827c and
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tcð�1Þ ¼ 156:52 days). Although the RDA rate of release of potential energy, GI;c ¼ 85:88 kJ/m2 is 4.427

times great as the rate of release of elastic energy, Wd;elð�1Þ ¼ 19:40 kJ/m2 the fatigue failure life is only

3.427 times long as fatigue life because some part of the total mechanical energy (elastic potential energy) is

converted through hysteretic loop dissipation and remainder is stored in the material and produced failure.

Two various methods of determining the rate of release of potential energy, GI have been analyzed. The

emphasis has been to show that RDA method enables the rate of release of potential energy to be calculated

from this theory, differently obtained by Griffith theory, or experimentally. On the basis of the comparison, the

present method is regarded as valid and suitable (RDA: GI ;c ¼ 85:88 kJ=m2, KI ;c ¼ 134:294 MNm�3=2;
Griffith: GI ¼ 88:368 kJ=m2, KI ¼ 136:225 MNm�3=2).

Fig. 13. LogN dependence of phase angle of testing bar.

Fig. 14. LogN dependence of difference between the rate of release of viscoelastic energy and the rate of release of elastic energy of

testing bar.
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On the other hand the test values are approximately given in handbooks such as Ashby and Jones (1980):

G ¼ 100 kJ/m2, K ¼ 140 MNm�3=2.

Fig. 16. External crack system of reinforced steel bar considered by Griffith�s theory.

Fig. 15. Axial fatigue curve of testing bar.
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10. RDA fatigue crack propagation

10.1. Crack propagation of long bar with circular cross-section

The cracks may initiate early in service life (period from the fatigue life to the fatigue failure life) and

propagate subcritically. The general approach to the analysis of the problem of the effect of maximum

absolute stress in the cycle, rmax on crack length must also be based on Bernoulli�s energy theorem and

localized reduction of cross-sectional area. Fatigue crack length as shown in Fig. 9 is

a ¼ 1

2
/1

0
B@ � /1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EHl20
rmaxA�u�

1
1þu� þ 1

4

q
1
CA: ð102Þ

For cracks subjected to cyclically varying loads, maximum and minimum stress intensity factors, Kmax and

Kmin, defined at the extremes of the cycle, are assumed to prescribe crack growth. The stress range under
cyclic loading is

Dr ¼ rmax � rmin ¼ ð1� rÞrmax; ð103Þ
thus the RDA rate of release of potential energy range and stress intensity range are:

DGI;c ¼
/1

/red

�
þ 1

�
ð1� rÞ2r2

maxl0
2EH

; ð104Þ

DKI;c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DGI;cEH

p
: ð105Þ

Crack growth and stress intensity range values are calculated by the RDA method (Table 3), on the above
testing bar and finally presented in the form of log-log plots of a=Nc versus DKI;c (Fig. 17).

A rmax, maximum absolute stress in the cycle (42.50–268.50 MPa).

B /1

/red
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EHl20

rmaxA�u�
1

1þu� þ 1
4

q
, the ratio of initial diameter to the reduced diameter

C a ¼ 1
2

/1 � /1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EHl2

0
rmaxA�u�

1
1þu�þ1

4

q
0
@

1
A, fatigue crack length

Table 3

Calculation of RDA fatigue crack growth a=N c

A B C D E F G H

42 49.8691603 IE-10

42.5 4.50739521 7.392353 2732.208777 3073350705 0.011842539 49.8691603 2.40531E–09

60 4.136121762 7.203162 1335.886124 1502684054 0.02201195 67.98904019 4.79353E–09

80 3.850190525 7.03259 720.7378823 810728776.4 0.036953833 88.09259243 8.6744E–09

100 3.642320574 6.891773 436.0121246 490452333.7 0.055265721 107.7302253 1.40519E–08

120 3.481017163 6.770913 281.346281 316475006.7 0.076817437 127.010479 2.13948E–08

140 3.350368959 6.664491 188.0876554 211572165.8 0.101508609 146.0027667 3.14998E–08

160 3.241288431 6.569067 127.5592206 143486187.4 0.129258314 164.7551091 4.57819E–08

180 3.148128412 6.482334 86.06112489 96806664.67 0.159999239 183.3025917 6.69617E–08

200 3.067155663 6.402668 56.37778116 63417076.67 0.193674079 201.6719034 1.00961E–07

220 2.99578236 6.328875 34.41546377 38712557.67 0.230233174 219.8839843 1.63484E-0-7

240 2.932146015 6.260052 17.71132025 19922744.94 0.26963287 237.9556736 3.14216E–07

260 2.874864654 6.195497 4.711568734 5299852.344 0.311834346 255.9007867 1.16899E–06

268.5 2.852177957 6.169212 0.045696183 51401.78067 0.330609734 263.492019 0.000120019

D.D. Mila�ssinovi�cc / International Journal of Solids and Structures 40 (2003) 181–217 211



D dcð�1Þ ¼ deð�1Þ �1þ GI;c

r2max
2EH

l0

 !
, relative frequency for the fatigue failure life

E Nc ¼ dcð�1Þ
d1

, number of cycles for the fatigue failure life; d1 ¼ 0:000000889, relative frequency for the

first cycle

F DGI;c ¼ /1

/red
þ 1

� 	
ð1�rÞ2r2maxl0

2EH
, RDA rate of release of potential energy range

G DKI;c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DGI;cEH

p
, RDA stress intensity range.

H a
Nc
, RDA fatigue crack growth.

The sigmoidal variation of fatigue crack growth with DKI;c is obtained from RDA calculation (r ¼ 0) in
terms of three regimes, as shown in Fig. 17. Curve in the second regime are compared to the best fit line of

power-law (axis intercept, C ¼ 1:5� 10�13:5, slope of crack growth curve, m ¼ 2:7).
This is evident from the fact that the crack growth relationship obtained here by RDA is very similar to the

experimental crack propagation data.

The crack growth relationships most often used in engineering defect-tolerant design and lifetime cal-

culations are based on mere empirical curves. Perhaps the safest approach to this problem has been to

develop semiempirical relationships based on physical models for crack growth and then to determine the

constants in the model by fitting to relevant experimental data.

10.2. Coefficient of asymmetry of cycle effect

The variation in the constant C with coefficient of asymmetry of cycle, r of above testing bar is shown in

Fig. 18. At a given stress intensity range, crack growth or constant C increases with increasing coefficient of

asymmetry of cycle. This effect named here as coefficient of asymmetry of cycle effect is known as load ratio

effect. Similar behavior has been observed by Paris et al. (1972) in tests on A533B-1 steel specimens.

10.3. RDA fatigue size effect

Fatigue crack propagation data are generally measured using standard fracture mechanics-type specimen

geometries, such as the compact tension, edge-notched bend, edge-notched tension, center-cracked sheet test-

pieces, and so forth.

Fig. 17. Fatigue crack growth (a=Nc (mm/cycle)) as a function of stress intensity range (DKI;c (MN(m�3=2))) of testing bar (l0=U ¼ 26:3).
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Fig. 18. Influence of coefficient of asymmetry of cycle on fatigue crack growth as a function of stress intensity range.

Fig. 19. Influence of diameter on fatigue crack growth as a function of stress intensity range.

Fig. 20. Influence of length on fatigue crack growth as a function of stress intensity range.
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In this section of the paper, the RDA modeling technique is used to investigate what is referred to here as

the RDA fatigue size effect (see Figs. 19 and 20). The mechanical characteristics of testing bar are used in

the calculation.

At a given stress intensity range, crack growth or constant C increases with increasing of diameter, but
decreases with increasing of length of steel specimen. On the other hand, there is no changing of the slope of

crack growth curve (m ¼ 2:7).

11. Fatigue crack growth rate

According to the original analysis of Paris and his co-workers, the crack growth increment per cycle in

fatigue (da=dN ) can be described in terms of a power law function of the range of KI, given by the alter-

nating stress intensity (DK ¼ Kmax � Kmin), thus:

da
dN

¼ CDKm; ð106Þ

where C and m are scaling constants for a particular material-heat-treatment condition. For structural steel:

C � 1:5� 10�11;m � 2:75� 3:0. Test data are used to construct crack length versus number of cycles N
plots, which are then differentiated, either graphically or numerically, to determine the rate of crack growth

(da=dN ) for each crack length ai.
First, to demonstrate the ability of the RDA analysis on fatigue crack growth rate, the axial fatigue setup

of testing bar is used for results comparison obtained here by RDA modeling technique and a best fit line of

Paris power-law (see Fig. 21).

The latter in order to demonstrate the effect of size on fatigue crack growth rate, the various sizes of

reinforcing steel bars are analyzed and compared with a best fit lines of Paris power-law. The slope of crack

growth rate curve, m ¼ 2:7 is not sufficiently different to be of interest, but axis intercept indicate fatigue
size effect. Now, this fatigue size effect may be defined as the increase in constant C with decreasing of ratio

l0=/ of specimen. Specimen, / ¼ 2:5 cm and l0=/ ¼ 5 (see Fig. 22) have scaling constant, C ¼ 1:5� 10�10

very similar to structural steel.

Fig. 21. Fatigue crack growth rate (da=dNc (mm/cycle)) as a function of stress intensity range (DKI;c (MN(m�3=2))) of testing bar

(l0=U ¼ 26:3).
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Let us examine a specimen with l0=/ ratio of 5, which RDA results of fatigue growth rate are in good

accordance with scaling constants of structural steel in terms of Paris power-law.

Slenderness ratio is 20 and the critical stress for it under quasi-static loading is yield sterss rY

(Mila�ssinovi�cc, 2000). Then it can be easily established (Fig. 6., Haigh type diagram) that line determined

under variable loading should be taken as the line of critical stresses.

lim
d!1

reð1Þ ¼ rY ¼ 400 MPa;

lim
d!1

reð0Þ ¼
1

2
1

�
þ 1

1þ u�

�
rY ¼ 267 MPa;

lim
d!1

reð�1Þ ¼ 1

1þ u� rY ¼ 133 MPa:

Now for this specimen the fatigue limit, re (�1) is in compliance with test results of axial fatigue of steel

specimens (reð�1Þ � 0:28� rc ¼ 0:28� 500 ¼ 140 MPa).

12. Conclusion

In the course of his research work, this author has developed a new model of viscoelasto-plastic material,

which is able to describe the mutual interaction of elasticity, viscoelasticity and viscoplasticity. Based on

this model, the RDA is established as the theoretical concept for studying the inelastic material deforming

of materials and structures as well as to solve the dynamical problems. By the RDA we involved one very

complicate nonlinear viscoelasto-plastic problem into a simpler linear dynamical one.

After examining the physical mechanism of the RDA on the base of energy transfer by mechanical wave

motion, the subsequent sections give discussion of different special situations for the axial fatigue behavior

in steel members. The main conclusions obtained are as follows:

(1) The theoretical value of the fatigue limit under constant stress amplitude is given by the following

formula:

reðrÞ ¼
1

2
rmax 1

2
4 þ r þ ð1� rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ uÞ2 þ d2

1þ d2

s
1

1þ u

3
5:

Fig. 22. Fatigue crack growth rate (da=dNc (mm/cycle)) as a function of stress intensity range (DKI;c (MN(m�3=2))) of smaller bar

(l0=U ¼ 5).
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The proposed S–N curves are based on extensive theoretical studies using a newly proposed rheological model

and RDA. Unlike previously available and purely empirical S–N curves, the newly developed S–N curves take

into account the mechanical aspects of fatigue and cater for the influence of creep (creep coefficient) of

material on the fatigue limit. However, comparison between the presently recommended design RDA S–N
curves and those recommended by other methods, and previously available S–N curves are possible only

for the same samples and experimental conditions.

(2) Results of a new rheological model parameters obtained in the paper using Bernoulli’s energy theorem

identify an important relationship, u�ðlÞ in rheology, which have not been considered before.

(3) The theoretical value of the rate of release of viscoelastic energy obtained by RDA description of the

hysteretic loop dissipation is given by the following formula:

Wd;veðrÞ ¼ pk
1

E2
H

ð1� rÞ2

2
r2
max

ð1þ u�Þ2 þ d2

1þ d2
d:

As a result, from the above formula and from the first law of thermodynamics we obtain: the relative

frequency deðrÞ for theoretical estimation of the fatigue life, the change in the temperature of the body and

the relative frequency dcðrÞ for theoretical estimation of the fatigue failure life.

(4) The general approach to the analysis of the problem of fatigue failure is based on Bernoulli�s energy
theorem from which localized reduction of cross-section area is defined. Furthermore, the RDA fracture

stress rc and the maximum applied dynamical stress rmax;c are obtained.

(5) The RDA rate of release of potential energy, GI ;c has been analyzed under the hypothesis that in period

from the fatigue life to the fatigue failure life the reduction of the cross-section area goes on. In the case of

axial loading of long bar with circular cross-section it is expressed by the following formula

GI;c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EHl20

rmax;cA�u�
1

1þ u� þ 1
4

s 
þ 1

!
r2
max;cl0
2EH

:

Two various methods of determining the rate of release of potential energy GI have been compared. The

emphasis has been to show that RDA method enables the rate of release of potential energy to be calculated

from this theory, differently obtained by Griffith�s theory, or experimentally. On the basis of the com-

parisons, the present method is regarded as valid and suitable (RDA: GI;c ¼ 85:88 kJ/m2, KI;c ¼ 134:294
MNm�3=2; Griffith: GI ¼ 88:368 kJ/m2, KI ¼ 136:225 MNm�3=2).

(6) Axial fatigue experiment of reinforcing steel bar was performed. After the experimental investigations it

may be concluded that the presented RDA method is well confirmed by the temperature measurements.

(7) The sigmoidal variation of fatigue crack propagation with DKI;c is obtained from RDA calculation in

terms of three regimes. Curve in the second regime is compared to a best fit line of power-law. This is evident

from the fact that the crack propagation relationship obtained here by RDA is very similar to the experimental

crack propagation data.

At a given stress intensity range, crack growth or constant C increases with an increase of coefficient of
asymmetry of cycle. This effect named here as coefficient of asymmetry of cycle effect is known as load ratio

effect.

The RDA modeling technique is used to investigate the effect of size on fatigue crack growth. At a given

stress intensity range, crack growth or constant C increases with an increase of diameter, but decreasing

with an increase of length of steel specimen. On the other hand, there is no changing to the slope of crack

growth curve, m ¼ 2:7. This is referred here as the RDA fatigue size effect.

(8) The ability of the RDA analysis on fatigue crack growth rate is demonstrated. The axial fatigue setup of

testing bar is used for results comparison obtained here by RDA modeling technique and a best fit line of
Paris power-law.
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To demonstrate the effect of size on fatigue crack rate, the various sizes of reinforcing steel bars are

analyzed and compared with a best fit lines of Paris power-law. The slope of crack growth rate curve,

m ¼ 2:7 is not sufficiently different to be of interest, but axis intercept, C indicate fatigue size effect. This

effect of size on fatigue crack growth rate is defined here as the increase in constant C with decreasing of
ratio l0=/ of specimen.

Due to the present observation, fundamentally new, our understanding of fatigue may be achieved. The

analytical RDA method is valid and suitable for modeling of fatigue behavior.
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